Skip to main content

Deep Learning Super-Resolution Enables Rapid Simultaneous Morphological and Quantitative Magnetic Resonance Imaging

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11074)

Abstract

Obtaining magnetic resonance images (MRI) with high resolution and generating quantitative image-based biomarkers for assessing tissue biochemistry is crucial in clinical and research applications. However, acquiring quantitative biomarkers requires high signal-to-noise ratio (SNR), which is at odds with high-resolution in MRI, especially in a single rapid sequence. In this paper, we demonstrate how super-resolution (SR) can be utilized to maintain adequate SNR for accurate quantification of the T\(_2\) relaxation time biomarker, while simultaneously generating high-resolution images. We compare the efficacy of resolution enhancement using metrics such as peak SNR and structural similarity. We assess accuracy of cartilage T\(_2\) relaxation times by comparing against a standard reference method. Our evaluation suggests that SR can successfully maintain high-resolution and generate accurate biomarkers for accelerating MRI scans and enhancing the value of clinical and research MRI.

Keywords

  • Super-resolution
  • Quantitative MRI
  • T\(_2\) relaxation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00129-2_1
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00129-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Chaudhari, A.S., et al.: Five-minute knee MRI for simultaneous morphometry and T\(_2\) relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J. Magn. Reson. Imaging 47, 1328–1341 (2017)

    CrossRef  Google Scholar 

  2. Mosher, T.J., Dardzinski, B.J.: Cartilage MRI T\(_2\) relaxation time mapping: overview and applications. Semin. Musculoskelet. Radiol. 8, 355–368 (2004)

    CrossRef  Google Scholar 

  3. Peterfy, C.G., Schneider, E., Nevitt, M.: The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16(12), 1433–1441 (2008)

    CrossRef  Google Scholar 

  4. Sveinsson, B., Chaudhari, A., Gold, G., Hargreaves, B.: A simple analytic method for estimating T2 in the knee from DESS. Magn. Reson. Imaging 38, 63–70 (2017)

    CrossRef  Google Scholar 

  5. Monu, U.D., Jordan, C.D., Samuelson, B.L., Hargreaves, B.A., Gold, G.E., McWalter, E.J.: Cluster analysis of quantitative MRI T\(_2\) and T\(_{1\rho }\) relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis Cartilage 25(October), 1–8 (2016)

    Google Scholar 

  6. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  7. Wang, Y.H., Qiao, J., Li, J.B., Fu, P., Chu, S.C., Roddick, J.F.: Sparse representation-based MRI super-resolution reconstruction. Measurement 47, 946–953 (2014)

    CrossRef  Google Scholar 

  8. Chaudhari, A.S., et al.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. (2018)

    Google Scholar 

  9. Baum, T., Joseph, G.B., Karampinos, D.C., Jungmann, P.M., Link, T.M., Bauer, J.S.: Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage/OARS 21(10), 1474–84 (2013)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Chaudhari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chaudhari, A., Fang, Z., Hyung Lee, J., Gold, G., Hargreaves, B. (2018). Deep Learning Super-Resolution Enables Rapid Simultaneous Morphological and Quantitative Magnetic Resonance Imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2018. Lecture Notes in Computer Science(), vol 11074. Springer, Cham. https://doi.org/10.1007/978-3-030-00129-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00129-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00128-5

  • Online ISBN: 978-3-030-00129-2

  • eBook Packages: Computer ScienceComputer Science (R0)