Skip to main content

Abstract

Molybdenum in plants, animals, and humans occurs in small quantities; however, being an essential element, the metal is a component of a range of enzymes. In animals and humans, these are xanthine oxidase, aldehyde oxidase, and sulfite oxidase. Goats that had been for many generations fed a semisynthetic, Mo low diet exhibited impaired growth, lower fertility, poor fetal survival, and a higher incidence of miscarriages. The importance of molybdenum consists in its toxicity, which affects primarily ruminants, cattle in particular. Molybdenum penetrates animal bodies through oral intake or inhalation. From the gastrointestinal tract, the element is transported to the kidneys, liver, and bones. In monogastric animals, molybdenum is absorbed through the wall of the stomach. In ruminants, its absorption takes place in the intestinal wall. Molybdenum poisoning is accompanied by a range of symptoms, many of which result from secondary copper deficiency. Typical signs of acute, uncomplicated molybdenosis include impaired bone formation, which may be a result of altered phosphorus metabolism. These changes lead to deformation of bones and joints, spontaneous pathological fractures of long bone metaphyses, and exostosis. A decrease can be observed in the activity of alkaline phosphatase and the content of proteoglycans in articular cartilage. Reproductive disorders affecting individuals of either sex also appear. Renal excretion rate of Mo in laboratory animals is rather quick, taking about 2 weeks. So far no biomagnification and bioaccumulation of molybdenum in animal bodies have been confirmed.

Monogastric animals are less susceptible to Mo toxicity, and the most tolerant to elevated doses seem to be horses. Sheep and cattle, on the other hand, exhibit the lowest level of resistance to Mo toxic effects. Regardless of the species, acute molybdenum poisoning leads to growth hindrance, reduced body weight, and increased mortality.

Anthropogenic environmental Mo contamination is related to its mining, production of steels for special purposes, and industrial waste discharge. When it comes to fossil fuels, the element accumulates and builds up in coals. Molybdenum contents in soils vary greatly. The highest amounts of molybdenum are found in soils formed from granite and clays. In plants growing on muschelkalk, keuper, and alluvial soils, on the other hand, Mo content is low.

Data on the way molybdenum affects free-living mammals are scarce. Some well-documented sources point to the “mysterious” moose disease in Sweden, caused by copper deficiency and molybdenosis. The latter disease evokes symptoms resembling copper deficiency.

Research is carried out mainly on domesticated avian species in which toxic molybdenum effects were observed at the dietary concentration of its absorbable forms exceeding 200 mg kg−1. Among undomesticated birds, analyses involved bobwhite quail (Colinus virginianus) treated with molybdenum disulfide (insoluble) and a soluble form of sodium molybdate dihydrate. Toxicity and bioavailability of both Mo forms were compared. These results are more realistic in showing the susceptibility and the risk birds are exposed to when it comes to environmental molybdenum. Human impact associated with molybdenum environmental contamination involves mainly combustion of fossil fuels, mining, and metallurgy. Molybdenum does not belong to metals of special significance in terms of environmental toxicology. The metal has not been classified as a major toxic element by the EPA. In Central Europe, plants growing on the soils formed from granite, gneiss, rotliegend, and shale, as well as on muck and peat soils, may represent a health hazard for free-living ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York, p 533

    Book  Google Scholar 

  • Allen JD, Gawthorne JM (1987) Effect of molybdenum treatments on the distribution of Cu and metallothionein in tissue extracts from rats and sheep. J Inorg Biochem 31:161–170

    Article  CAS  Google Scholar 

  • Allway WH, Kubota J, Losee F, Roth M (1968) Selenium, molybdenum, and vanadium in human blood. Arch Environ Health 16:342–349

    Article  Google Scholar 

  • Anbar AD (2004) Molybdenum stable isotopes: observations, interpretations and directions. Rev Mineral Geochem 55:429–454

    Article  Google Scholar 

  • Anke M (1986) Schädliche Wirkungen lebensnodwendiger anorganischer Futterbestandteile. Jahrestagung, Wissenschaftliche Gesellschaft für Veterinärmedizin der DDR, Karl-Marx-Stadt, pp 45–66

    Google Scholar 

  • Anke M (2004) Molybdenum. In: Merian E et al (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim, pp 1007–1037

    Chapter  Google Scholar 

  • Anke M, Groppel B (1985) Possibilities to reduce the toxic effect of sulphur, cadmium, molybdenum, zinc and nickel in useful animals. In: Legutko S (ed) Protection of the natural environment and development of animal production, Kraków, pp 41–63

    Google Scholar 

  • Anke M, Risch M (1989) Importance of molybdenum in animal and man. In: Anke M et al (eds) 6th international trace element symposium, Molybdenum, vanadium, vol 1. University of Leipzig and Jena, Germany, pp 303–321

    Google Scholar 

  • Anke M, Grün M, Partschefeld M, Groppel B (1978) Molybdenum deficiency in ruminants. In: Kirchgessner M (ed) Trace element metabolism in man and animals (TEMA–3). Technical University Munich, Freising-Weihenstephan, Germany, pp 230–232

    Google Scholar 

  • Anke M, Groppel B, Kronemann H, Grün M, Szentmihalyi S (1983) Die Versorgung von Pflanze, Tier und Mensch mit Molybdän. In: Anke M et al (eds) Mengen- und Spurenelemente. University of Leipzig, Arbeitstagung, pp 22–36

    Google Scholar 

  • Anke M, Groppel B, Grün M (1985a) Essentiality, toxicity, requirement and supply of molybdenum in human and animals. In: Mills CF, Bremner I, Chester JK (eds) Trace element in man and animals. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, pp 154–157

    Google Scholar 

  • Anke M, Groppel B, Kronemann H, Grün M (1985b) Molybdenum supply and status in animals and human beings. Nutr Res (Suppl I):180–186

    Google Scholar 

  • Anke M, Arnhold W, Müller R, Schäfer U, Dorn W, Gunstheimer G et al (2000) Der Kupfer- und Molybdänstatus des ostdeutschen Rotwildes im vergleich zu anderen Wildwiederkäuerarten. Beitrage zur Jagd-und Wildforschung 25:77–87

    Google Scholar 

  • Anke M, Seifert M, Holzinger S, Müller R, Schäfer U (2007) The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part 2. Molybdenum in animals and man. Acta Biol Hung 58:325–333

    Article  CAS  Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic oceans. Science 304:87–90

    Article  CAS  Google Scholar 

  • Barth N, Palchen W, Rank G, Heilmann H (1996) Bodenatlas des Freistaates Sachsen. Teil 1. Freistaat Sachsen. Landesamt fur Umwelt und Geologie, Dresden

    Google Scholar 

  • Bhattacharyya S, Donahoe RJ, Patel D (2009) Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements. Fuel 88:1173–1184

    Article  CAS  Google Scholar 

  • Bibr B, Marik T, Ksetikova M, Lener J (1983) Binding of Mo-99 to red-cell membrane-proteins is not affected by reducing agent. Br J Haematol 53:172–173

    Article  CAS  Google Scholar 

  • Blood DC, Radostits OM (1989) Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats and horses, 7th edn. Bailliere-Tindall, London

    Google Scholar 

  • Bompart G, Pécher C, Prévot D, Girolami JP (1990) Mild renal failure induced by subchronic exposure to molybdenum: urinary kallikrein excretion as a marker for distal tubular effect. Toxicol Lett 52:293–300

    Article  CAS  Google Scholar 

  • Bruckwicki P, Giggleman C, Lewis J (2006) An investigation of contaminant levels in white-tailed deer (Odocoileus virginianus) collected from Caddo Lake National Wildlife Refuge, Harrison County, Texas 2005 Project ID Nos: DEC No 200520002; FFS No 2N53

    Google Scholar 

  • Brzeziński M, Zalewski A, Niemczynowicz A, Jarzyna I, Suska-Malawska M (2014) The use of chemical markers for the identification of farm escapees in feral mink populations. Ecotoxicology 23:767–778

    Article  CAS  Google Scholar 

  • Budaveri S (1996) The Merck index: an encyclopedia of chemicals, drugs, and biological, 12th edn. Merck & Co, Whitehouse Station, New Jersey

    Google Scholar 

  • Buekers J, Mertens J, Smolders E (2010) Toxicity of the molybdate anion in soil is partially explained by effects of the accompanying cation or by soil pH. Environ Toxicol Chem 29:1274–1278

    CAS  Google Scholar 

  • Burris RH, Roberts GP (1993) Biological nitrogen fixation. Annu Rev Nutr 13:317–335

    Article  CAS  Google Scholar 

  • Chan PC, Herbert RA, Roycroft JH, Haseman JK, Grumbein SL, Miller RA et al (1998) Lung tumor induction by inhalation exposure to molybdenum trioxide in rats and mice. Toxicol Sci 45:58–65

    Article  CAS  Google Scholar 

  • Chappell WR, Meglen RR, Moure-Eraso R, Solomons CC, Tsongas TA, Walravens PA (1979) Human health effects of molybdenum in drinking water. Cincinnati, OH, United States Environmental Protection Agency (EPA-600A-79-006)

    Google Scholar 

  • Cohen HJ, Fridovich I, Rajagopalan KV (1971) Hepatic sulfite oxidase: a functional role for molybdenum. J Biol Chem 246:374–382

    CAS  Google Scholar 

  • Combs GF Jr (2005) Geological impacts on nutrition. In: Selinus O et al (eds) Essentials of medical geology, impacts of the natural environment on public health. Elsevier, Amsterdam, pp 162–177

    Google Scholar 

  • Considine GD (ed) (2005) Molybdenum. Van Nostrand’s encyclopedia of chemistry. Wiley-Interscience, New York, pp 1038–1040

    Google Scholar 

  • Custer TW, Cox E, Gray B (2004) Trace elements in moose (Alces alces) found dead in north western Minnesota, USA. Sci Total Environ 330:81–87

    Article  CAS  Google Scholar 

  • Davis GK, Mertz W (1987) Copper. In: Mertz W (ed) Trace elements in human and animal nutrition, vol I. Academic Press, San Diego, pp 301–364

    Chapter  Google Scholar 

  • De Schamphelaere KAC, Stubblefield W, Rodriguez P, Vleminckx K, Janssen CR (2010) The chronic toxicity of molybdate to freshwater organisms. I. Generating reliable effects data. Sci Total Environ 408:5362–5371

    Article  CAS  Google Scholar 

  • De Vos W, Tarvainen T (2006) Geochemical atlas of Europe. Part 2, Geological Survey of Finland, Espoo

    Google Scholar 

  • Dziekan P, Kleczkowski M, Kluciński W, Jakubowski T, Dembele K, Sikora J (2007) Influence of fodder irrigated with utility refuses from potato industry on copper and malondialdehyde concentration in the blood of cows. Med Weter 63:1111–1114

    Google Scholar 

  • EFSA (2006) European food safety authority. Tolerable upper intake levels for vitamins and minerals, Scientific Committee and Food. Scientific Panel on Dietetic Products. Nutrition and allergies, pp 77–86 [http://www.efsa.eu.int]

  • Eisler R (1989) Molybdenum hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish and Wildlife Service, Biol Rep 85 (1.19)

    Google Scholar 

  • Emsley J (2001) Nature’s building blocks. Oxford University Press, Oxford, pp 262–266

    Google Scholar 

  • Enzmann RD (1972) Molybdenum: element and geochemistry. In: The encyclopedia of geochemistry and environmental sciences. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Eurlik J, Šefeik P (1999) Geochemical atlas of the Slovak Republic: soils. Ministry of the Environment of the Slovak Republic

    Google Scholar 

  • Fairhall LT, Dunn RC, Sharpless NE, Pritchard EA (1945) The toxicity of molybdenum. US Public Health Bull 293:36

    Google Scholar 

  • Feldman RI, Weiner H (1972) Horse liver aldehyde dehydrogenase. I. Purification and characterizations. J Biol Chem 247:260–266

    CAS  Google Scholar 

  • Fitzgerald D, Nicholson R, Regoli L (2007) Environmental management criteria for selenium and molybdenum: a review relevant to the mining industry. MEND REPORT 10.1.1. The Mining Association of Canada (MAC). http://mend-nedem.org/wp-content/uploads/ 2013/01/10.1.1.pdf

  • Frank A (1998) ‘Mysterious’ moose disease in Sweden. Similarities to copper deficiency and/or molybdenosis in cattle and sheep. Biochemical background of clinical signs and organ lesions. Sci Total Environ 209:17–26

    Article  CAS  Google Scholar 

  • Frank A (2003) Molybdenosis leading to type 2 diabetes mellitus in Swedish moose. In: Skinner HCW, Berger AR (eds) Geology and health-closing the gap. Oxford University Press, Oxford, pp 79–81

    Google Scholar 

  • Frank A, Galagan V (1997) The moose (Alces alces L.), a fast and sensitive monitor of environmental changes. In: Subramanian KS, Iyengar GV (eds) Environmental biomonitoring. ACS Symposium Series 654:57–64

    Google Scholar 

  • Frank A, Galagan V, Petersson LR (1994) Secondary copper deficiency, chromium deficiency and trace element imbalance in the moose (Alces alces L.): effect of anthropogenic activity. Ambio 23:315–317

    Google Scholar 

  • Frank A, Danielsson R, Jones B (2000) The ‘mysterious’ disease in Swedish moose. Concentrations of trace elements in liver and kidneys and clinical chemistry. Comparison with experimental molybdenosis and copper deficiency in the goat. Sci Total Environ 249:107–122

    Article  CAS  Google Scholar 

  • Frank A, Wibom R, Danielsson R (2002) Myocardial cytochrome c oxidase activity in Swedish moose (Alces alces L.) affected by molibdenosis. Sci Total Environ 290:121–129

    Article  CAS  Google Scholar 

  • Frank A, Danielsson R, Selinus O (2004a) Comparison of two monitoring systems for Cu and Mo in the Swedish environment. Sci Total Environ 330:131–143

    Article  CAS  Google Scholar 

  • Frank A, Mc Partlin J, Danielsson R (2004b) Nova Scotia moose mystery – a moose sickness related to cobalt-end vitamin B12 deficiency. Sci Total Environ 318:89–100

    Article  CAS  Google Scholar 

  • Friberg L, Lener J (1986) Molybdenum. In: Friberg L et al (eds) Handbook on the toxicology of metals, 2nd edn. Elsevier, North-Holland Biomedical Press, New York, pp 446–461

    Google Scholar 

  • Friberg L, Boston P, Nordberg G, Piscator M, Robert KH (1975) Molybdenum a toxicological appraisal. US Environmental Protection Agency Report 600/1–75-004, p 142

    Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2004) Trace elements in river waters. Treat Geochem 5:225–227

    CAS  Google Scholar 

  • Gamberg M (1997) Contaminants in Yukon Moose and Caribou – 1996. Report for Yukon Contaminants Committee and Department of Indian and Northern Affairs Northern Contaminants Program Whitehorse, Yukon. http://northerncontaminants.ca/old-ncp-site/done/reports/1g-contamMoosCarReports/reports/1996%20Report.pdf

  • Gooneratne SR, Buckley WT, Christensen DA (1989) Review of copper deficiency and metabolism in ruminants. Can J Anim Sci 69:819–845

    Article  Google Scholar 

  • Gooneratne SR, Chaplin RK, Trent AM, Christensen DA (1998) Effect of tetrathiomolybdate administration on the excretion of copper, zinc, iron and molybdenum in sheep bile. Br Vet J 145:62–72

    Article  Google Scholar 

  • Gregorauskiene V, Kadûnas V (2000) Chemical composition of soil land lake sediments – an indicator of geological processes in Lithuania. Geol Q 44:347–354

    Google Scholar 

  • Gu X, Chen R, Hu G, Zhuang Y, Luo J, Zhang C et al (2015) Cell apoptosis of caprine spleen induced by toxicity of cadmium with different levels of molybdenum. Environ Toxicol Pharmacol 40:49–56

    Article  CAS  Google Scholar 

  • Hall JO (2012) Molybdenum. In: Gupta RC (ed) Veterinary toxicology. Elsevier, Amsterdam

    Google Scholar 

  • Halverson AW, Phifer JH, Monty KJ (1960) A mechanism for the copper-molybdenum interrelationship. J Nutr 71:95–100

    Article  CAS  Google Scholar 

  • He ZL, Zhou QX, Xie ZM (1998) Soil-chemical balances of pollution and beneficial elements. China Environmental Science Press, Beijing, pp 1–34

    Google Scholar 

  • He ZL, Yang XE, Stoffellab PJ (2005) Trace elements in agro ecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  Google Scholar 

  • Heijerick DG, Regoli L, Carey S (2012a) The toxicity of molybdate to freshwater and marine organisms. II. Effects assessment of molybdate in the aquatic environment under REACH. Sci Total Environ 435–436:179–187

    Article  CAS  Google Scholar 

  • Heijerick DG, Regoli L, Stubblefield W (2012b) The chronic toxicity of molybdate to marine organisms. I. Generating reliable effects data. Sci Total Environ 430:260–269

    Article  CAS  Google Scholar 

  • Hille R (2002) Molybdenum and tungsten in biology. Trends Biochem Sci 27:360–367

    Article  CAS  Google Scholar 

  • Hille R, Nishinoa T, Bittner F (2011) Molybdenum enzymes in higher organisms. Coord Chem Rev 255:1179–1205

    Article  CAS  Google Scholar 

  • Holzinger S, Anke M, Röhrig B, Gonzalez D (1998) Molybdenum intake of adults in Germany and Mexico. Analyst 123:447–450

    Article  CAS  Google Scholar 

  • Horai S, Watanabe I, Takada H, Iwamizu Y, Hayashi T, Tanabe S et al (2007) Trace element accumulations in 13 avian species collected from the Kanto area, Japan. Sci Total Environ 373:512–525

    Article  CAS  Google Scholar 

  • Hornick SB, Baker DE, Guss SB (1977) Molybdenum in the environment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Humphries WR, Phillippo M, Young BW, Bremer I (1983) The influence of dietary iron and molybdenum on copper metabolism in calves. Br J Nutr 49:77–86

    Article  CAS  Google Scholar 

  • Ikemoto T, Tu NPC, Okuda N, Iwata A, Omori K, Tanabe S et al (2008) Biomagnification of trace elements in the aquatic food Web in the Mekong Delta, South Vietnam, Rusing stable carbon and nitro gen isotope analysis. Arch Environ Contam Toxicol 54:504–515

    Article  CAS  Google Scholar 

  • IMOA (2014) Industrial and Environmental Exposure of Humans – www.imoa.info/HSE/environmental-data/human-health/industrial-exposure.php [Access of 10 Oct 2016]

  • Ivanova NN (1973) Molybdenum in plant nutrition. Agrochimica 17:96

    Google Scholar 

  • Johnson JL (1997) Molybdenum. In: O’Dell BL, Sunde RA (eds) Handbook of nutritionally essential mineral elements. Marcel Dekker, New York, pp 413–438

    Google Scholar 

  • Jones B (2005) Animals and medical geology. In: Selinus O, Alloway BJ, Centeno JA, Finkelman LB, Fuge R, Lindh U et al (eds) Essentials of medical geology. Elsevier, Amsterdam, pp 513–526

    Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. Taylor and Francis Group, Boca Raton, pp 190–198

    Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Kadûnas V, Budavièius R, Gregorauskiené V, Katinas V, Kliaugiene E, Radzevièius A et al (1999) Geochemical atlas of Lithuania. Geological Survey of Lithuania, Geology Institute, Vilnius

    Google Scholar 

  • Kessler KL, Olson KC, Wright CL, Austin KJ, Johnson PS, Cammack KM (2012) Effects of supplemental molybdenum on animal performance, liver copper concentrations, ruminal hydrogen sulfide concentrations, and the appearance of sulfur and molybdenum toxicity in steers receiving fiber-based diets. J Anim Sci 90:5005–5012

    Article  CAS  Google Scholar 

  • Kim J, Woo D, Rees DC (1993) X-ray crystal structure of the nitrogenase molybdenum-iron protein from Clostridium pasteurianum at 3.0-A resolution. Biochemistry 32:7104–7115

    Article  CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  CAS  Google Scholar 

  • Koljonen T (1992) The geochemical atlas of Finland. Part 2: Till. Geological Survey of Finland, Espoo

    Google Scholar 

  • Kośla T, Anke M, Lösch E (1989) Molybdänstatus-bedarf und-versorgung des Pferdes. In: Anke M et al (eds) 6th international trace element symposium, Molybdenum, vanadium, vol 1. University of Leipzig and University of Jena, Germany, pp 337–345

    Google Scholar 

  • Kubota J (1977) Molybdenum status of U.S. soils and plants. In: Chappell WR, Petersen KK (eds) Molybdenum in the environment, The geochemistry, cycling, and industrial uses of molybdenum, vol 2. Marcel Dekker, New York, pp 555–581

    Google Scholar 

  • Lăcătuşu R, Borza I (1989) Induced molybdenum deficiency in sunflower. In: Anke M et al (eds) 6th international trace element symposium, Molybdenum, vanadium, vol 1. University of Leipzig and University of Jena, Germany, pp 295–302

    Google Scholar 

  • Leichtfried G (1990) Ullmann’s encyclopedia of industrial chemistry, vol A16, 5th edn. Wiley-VCH, Germany, p 668

    Google Scholar 

  • Lener J (1978) Molybdenum as an environmental factor from the viewpoint of some of its effects. DSc thesis, Charles University, Prague

    Google Scholar 

  • Li Y-H (ed) (2000) A compendium of geochemistry: from solar nebula to the human brain. Princeton University Press, Princeton

    Google Scholar 

  • Lukasev AA, Siskova NK, Knys VS (1971) Pathomorphological studies of animal organs in chronic molybdenum poisoning. Tr Inst Kraev Patol Kaz SSR 22:202–205

    Google Scholar 

  • Magyar MJ (2007) Molybdenum. U.S. Geological Survey, Mineral Commodity Summaries, pp 110–111

    Google Scholar 

  • Magyar MJ (2009) Molybdenum. U.S. Geological Survey, Mineral Commodity Summaries, pp 108–109

    Google Scholar 

  • Mason J (1986) Thiomolybdates: mediators of molybdenum toxicity and enzyme inhibitors. Toxicology 42:99–109

    Article  CAS  Google Scholar 

  • Mason J, Cardin CJ (1977) The competition of molybdate and sulphate ions for a transport system in the ovine small intestine. Res Vet Sci 22:313–315

    Article  CAS  Google Scholar 

  • Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635

    Article  CAS  Google Scholar 

  • Miller JK, Moss BR, Bell MC, Sneed NN (1972) Comparison of 99Mo metabolism in young cattle and swine. J Anim Sci 34:846–850

    Article  CAS  Google Scholar 

  • Mills CF, Davis GK (1987) In: Mertz W (ed) Trace elements in human and animal nutrition, vol 1, 5th edn. Academic Press, San Diego, pp 429–463

    Chapter  Google Scholar 

  • Mills CF, Bremner I, El-Gallad TT, Dalgarno AC, Young BW (1978) Mechanisms of the molybdenum/sulphur antagonism of copper utilisation by ruminants. In: Kirchgessner M (ed) Trace element metabolism in man and animals, vol 3. Technical University of Munich, Germany, pp 50–158

    Google Scholar 

  • Mitchell PCH (2003) Molybdenum. Chem Eng News 81:108

    Article  CAS  Google Scholar 

  • Mochizuki M, Sasaki R, Yamashita Y, Akinaga M, Anan N, Sasaki S et al (2002) The distribution of molybdenum in the tissue of wild duck. Environ Monit Assess 77:155–161

    Article  CAS  Google Scholar 

  • Nielsen FH (1996) Other trace elements. In: Ziegler EE, Filer LJ (eds) Present knowledge in nutrition, 7th edn. International Life Science Institute Press, Washington, DC, pp 353–377

    Google Scholar 

  • Nozaki Y (2005) A fresh look at element distribution in the North Pacific, AGU. http://www.agu.org/eos.elec/97025e.html

  • NRC (2004) National Research Council. Canadian minerals yearbook: molybdenum. National Resources Canada. Available online: http://www.nrcan-rncan.gc.ca/mms-smm/busi-indu/cmy-amc/content/2004/40.pdf

  • NRC (2006) National Research Council. Molybdenum. In: Mineral tolerance of animals, 2nd edn. National Academies Press, Washington, DC, pp 262–275

    Google Scholar 

  • Pandey VC, Abhilash PC, Upadhyay RN, Tewari DD (2009) Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L. Implication for safe utilization of fly ash for agricultural production. J Hazard Mater 166:255–259

    Article  CAS  Google Scholar 

  • Pasieczna A (2012) Molybdenum and tin in soils of Poland. Biul Państw Inst Geol 450:75–82

    Google Scholar 

  • Polyak DE (2013) Molybdenum. U.S. Geological Survey, Mineral Commodity Summaries, pp 106–107

    Google Scholar 

  • Polyak DE (2016a) Molybdenum. U.S. Geological Survey, Mineral Commodity Summaries, pp 112–113

    Google Scholar 

  • Polyak DE (2016b) Molybdenum. 2014 Minerals Yearbook. U.S. Geological Survey, pp 50.1–50.12

    Google Scholar 

  • Pott EB, Henry PR, Zanetti MA, Rao PV, Hinderberger EJ Jr, Ammerman CB (1999) Effects of high dietary molybdenum concentration and duration of feeding time on molybdenum and copper metabolism in Steep. Anim Feed Sci Technol 79:93–105

    Article  CAS  Google Scholar 

  • Price J, Will AM, Paschaleris G, Chesters JK (1987) Identification of thiomolybdates in digesta and plasma from sheep after administration of Mo99-labeled compounds into the rumen. Br J Nutr 58:127–138

    Article  CAS  Google Scholar 

  • Puls R (1988) Mineral levels in animal health: diagnostic data, 2nd edn. Clearbrook, British Columbia, p 240

    Google Scholar 

  • Rajagopalan KV (1988) Molybdenum: an essential trace element in human nutrition. Annu Rev Nutr 8:401–427

    Article  CAS  Google Scholar 

  • Regius A, Anke M (1989) The Cu-, Mo- and protein content of different sorts of alfalfa on soils of similar and different origin. In: Anke M et al (eds) 6th international trace element symposium, Molybdenum, vanadium, vol 1. University of Leipzig and University of Jena, Germany, pp 276–285

    Google Scholar 

  • Regoli L, Van Tilborg W, Heijerick D, Stubblefield W, Carey S (2012) The bioconcentration and bioaccumulation factors for molybdenum in the aquatic environment from natural environmental concentrations up to the toxicity boundary. Sci Total Environ 435–436:96–106

    Article  CAS  Google Scholar 

  • Reid SD (2012) Molybdenum and chromium. Homeost Toxicol Essent Met 31A(8):375–415

    Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Reimann C, Äyräs S, Chekusin V, Bogatyrev I, Boyd R, Caritat P et al (1998) Environmental geochemical atlas of the central Barents region. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Reimann C, Siewers U, Tarvainen T, Bitukova L, Eriksson J, Gilucis A et al (2003) Agricultural soils in Northern Europe: a geochemical atlas. Bundesanstalt für Geowissenschaften und Rohstoffe und Staatliche Geologische Dienste in der Bundesrepublik Deutschland, Hannover

    Google Scholar 

  • Rosoff B, Spencer H (1973) The distribution and excretion of molybdenum-99 in mice. Health Phys 25:173–175

    CAS  Google Scholar 

  • Rousseaux CG, Haschek WM, Wallig MA (2002) Handbook of toxicologic pathology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621

    Article  CAS  Google Scholar 

  • Schnabel R, Bunke C (1989) On the distribution of molybdenum in soil – plant system. In: Anke M et al (eds) 6th international trace element symposium, Molybdenum, vanadium, vol 1. University of Leipzig and Jena, Germany, pp 192–198

    Google Scholar 

  • Sebenik RF, Burkin AR, Dorfler RR, Laferty JM, Leichtfried G, Meyer-Grünow H et al (2002) Molybdenum and molybdenum compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Sellmann D (1993) X-ray structure analysis of FeMo nitrogenase – is the problem of N2 fixation solved? Angew Chem Int Ed 32:64–67

    Article  Google Scholar 

  • Sequi P (1973) Molybdenum in earth. Agrochimica 17:119–140

    Google Scholar 

  • Shan WJ, Fang DW, Shuang Y, Kong YX, Zhao ZY, Xing ZQ et al (2012) Equilibrium, kinetics and thermodynamics on the recovery of Rhenium(vii) and Molybdenum(vi) from industrial wastewater by chemically modified waste paper gel. J Chem Eng Data 57:290–297

    Article  CAS  Google Scholar 

  • Shields JA Jr (2013) Applications of molybdenum metal and its alloys. International Molybdenum Association, London

    Google Scholar 

  • Sigma-Aldrich (2015a) Material Safety Data Sheet of Ammonium Molybdate. http://www.sigmaaldrich.com/taiwan.html

  • Sigma-Aldrich (2015b) Material Safety Data Sheet of Molybdenum(vi) Oxide. http://www.sigmaaldrich.com/taiwan.html

  • Sigma-Aldrich (2015c) Material Safety Data Sheet of Sodium Molybdate. http://www.sigmaaldrich.com/taiwan.html

  • Skibniewski M, Skibniewska E, Kośla T, Kołnierzak M (2015) The molybdenum content in the muscles of red deer (Cervus elaphus). Acta Sci Pol Zootech 14:175–183

    Google Scholar 

  • Skibniewski M, Skibniewska EM, Kośla T, Olbrych K (2016) The content of copper and molybdenum in the liver, kidneys, and skeletal muscles of elk (Alces alces) from North-Eastern Poland. Biol Trace Elem Res 169:204–210

    Article  CAS  Google Scholar 

  • Smith GM, White CL (1997) A molybdenum–sulfur–cadmium interaction in sheep. Aust J Agric Res 48:147–154

    Article  CAS  Google Scholar 

  • Spears JW (1992) Reevaluation of the metabolic essentiality of the minerals. Asian Australas J Anim Sci 12:1002–1008

    Article  Google Scholar 

  • Stafford JM, Lambert CE, Zyskowski JA, Engfehr CL, Fletcher OJ, Clark SL et al (2016) Dietary toxicity of soluble and insoluble molybdenum to northern bobwhite quail (Colinus virginianus). Ecotoxicology 25:291–301

    Article  CAS  Google Scholar 

  • Stiefel EI (2002) The biogeochemistry of molybdenum and tungsten. In: Sigel A, Sigel H (eds) Metal ions in biological system, Molybdenum and tungsten: their roles in biological processes, vol 39. Marcel Dekker, New York, pp 1–29

    Google Scholar 

  • Stokinger HE (1981) Molybdenum. In: Clayton GD, Clayton FE (eds) Patty’s industrial hygiene and toxicology, Toxicology, vol 2A, 3rd edn. John Wiley & Sons, New York, pp 1807–1820

    Google Scholar 

  • Swan DA, Creeper JH, White CL, Ridings M, Smith GM, Costa ND (1998) Molybdenum poisoning in feedlot cattle. Aust Vet J 76:345–349

    Article  CAS  Google Scholar 

  • Tallkvist J, Oskarsson A (2015) Molybdenum. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L (eds) Handbook on the toxicology of metals, 4th edn. Elsevier, Amsterdam, pp 731–741

    Google Scholar 

  • Thornton I (1981) Geochemical aspects of the distribution and forms of heavy metals in soils. In: Lepp NW (ed) Effect of heavy metal pollution on plants: metals in the environment. Applied Science Publishers, London, pp 1–34

    Google Scholar 

  • Turnlund JR, Keyes WR, Peiffer GL, Chiang G (1995) Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion. Am J Clin Nutr 61:1102–1109

    Article  CAS  Google Scholar 

  • Underwood EJ (1977) Trace elements in human and animal nutrition, Molybdenum, 4th edn. Academic Press, New York, pp 109–131

    Book  Google Scholar 

  • United States Department of the Interior (1998) National Irrigation Water Quality Program Information Report no. 3. Guidelines for interpretation of the biological effect of selected constituents in biota, water and sediment molybdenum, p 115

    Google Scholar 

  • US EPA (1992) Guidelines for exposure assessment. US Environmental Protection Agency, Risk Assessment Forum, Washington, DC, EPA/600/Z-92/001, 1992

    Google Scholar 

  • USGS (2015) U.S. geological survey. Mineral resources on-line spatial data. http://mrdata.usgs.gov/soilgeochemistery/#/detail/element/42

  • Van Gennip AH, Abeling NG, Stroomer AEM, Overmars H, Bakker HD (1994) The detection of molybdenum cofactor deficiency: clinical symptomatology and urinary metabolic profile. J Inherit Metab Dis 17:142–145

    Article  Google Scholar 

  • Venugopal B, Luckey TD (1978) Molybdenum. In: Metal toxicity in mammals. 2. Chemical toxicity of metals and metalloids. Plenum Press, New York, pp 253–257

    Google Scholar 

  • Versieck J, Hoste J, Vanballengerghe L, Barbier F, Cornelis R, Waelput I (1981) Serum molybdenum in diseases of the liver and biliary system. J Lab Clin Med 97:535–544

    CAS  Google Scholar 

  • Vyskocil A, Viau C (1999) Assessment of molybdenum toxicity in humans. J Appl Toxicol 19:185–192

    Article  CAS  Google Scholar 

  • Walker LA, Lawlor AJ, Chadwick EA, Potter E, Pereira MG, Shore RF (2010) Inorganic elements in the livers of Eurasian otters, Lutra lutra, from England and Wales in 2007 & 2008: A Predatory Bird Monitoring Scheme (PBMS) report. Centre for Ecology and Hydrology, Lancaster

    Google Scholar 

  • Wang CW, Liang C, Yeh HJ (2016) Aquatic acute toxicity assessments of molybdenum (vi) to Daphnia magna. Chemosphere 147:82–87

    Article  CAS  Google Scholar 

  • Wedepohl KH (2004) The composition of Earth’s upper crust, natural cycles of elements, natural resources. In: Merian E et al (eds) Elements and their compounds in the environment, 2nd edn. Wiley-VCH, Weinheim, pp 3–16

    Google Scholar 

  • Williams RJP, da Silva JRF (2002) The involvement of molybdenum in life. Biochem Biophys Res Commun 292:293–229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Kośla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kośla, T., Skibniewski, M., Skibniewska, E.M., Lasocka, I., Kołnierzak, M. (2019). Molybdenum, Mo. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_8

Download citation

Publish with us

Policies and ethics