Skip to main content

Abstract

The harmfulness of tin (Sn) on the environment depends on the chemical form in which it occurs. In general, organic Sn compounds are more toxic than metallic tin and inorganic tin compounds. Some studies suggest that tin is an essential trace element for animals and perhaps for humans, but no consensus exists in this regard. Concentrations of inorganic tin in the air, soil, and water are usually low, apart from those areas with naturally high Sn content and regions surrounding tin processing plants. The toxic activity of Sn, caused by environmental exposure to tin, has not been reported in plants, animals, or humans. From an ecotoxicological point of view, the most important compounds are the organotins, mostly due to their androgenic activity and contribution to the increasing number of imposex individuals between marine vertebrates and invertebrates. Literature data about the bioaccumulation of inorganic tin in land ecosystems is very limited, especially in relation to mammals. Also, most of the data concerning the aptitude of some species of animals and biological parameters to be used as bioindicators and biomarkers of environmental exposure to tin usually relate to marine habitats and organic forms of this element. It seems that the problem of land habitat pollution with tin is not well elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo P, Iavazzo P, Albanese S et al (2014) Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils. Sci Total Environ 500–501:11–22

    Article  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risk of metals. Springer, New York

    Book  Google Scholar 

  • Alloway BJ (1990) Heavy metals in soils. Wiley, New York

    Google Scholar 

  • Argyraki A, Kelepertzis E (2014) Urban soil geochemistry in Athens, Greece: the importance of local geology in controlling the distribution of potentially harmful trace elements. Sci Total Environ 482–483:366–377

    Article  Google Scholar 

  • ATSDR (2005) Toxicological profile for tin and tin compounds. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

    Google Scholar 

  • Benoy CJ, Hooper PA, Schneider R (1971) The toxicity of tin in canned fruit juices and solid foods. Food Cosmet Toxicol 9(5):645–656

    Article  CAS  Google Scholar 

  • Budavari S (2001) Tin. In: Budavari S (ed) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 13th edn. Wiley, New York, p 1685

    Google Scholar 

  • Chmielnicka J (2006) Tin. In: Senczuk W (ed) Contemporary toxicology. PZWL, Warsaw, pp 382–386

    Google Scholar 

  • Chmielnicka J, Zareba G, Grabowska U (1992) Protective effect of zinc on heme biosynthesis disturbances in rabbits after administration per os of tin. Ecotoxicol Environ Saf 24:266–274

    Article  CAS  Google Scholar 

  • Chmielnicka J, Zareba G, Polkowska-Kulesza E, Najder M, Korycka A (1993) Comparison of tin and lead toxic action on erythropoietic system in blood and bone marrow of rabbits. Biol Trace Elem Res 36:73–87

    Article  CAS  Google Scholar 

  • Cohen DR, Rutherford NF, Morisseau E, Zissimos AM (2012) Geochemical patterns in the soils of Cyprus. Sci Total Environ 420:250–262

    Article  CAS  Google Scholar 

  • Curlik J, Šefeik P (1999) Geochemical atlas of the Slovak Republic. Soils. Ministry of the Environment of the Slovak Republic

    Google Scholar 

  • de Carvalho OR, Santelli RE (2010) Occurrence and chemical speciation analysis of organotin compounds in the environment: a review. Talanta 82:9–24

    Article  Google Scholar 

  • De Vos W, Tarvainen T, Salminen R et al (2006) Geochemical atlas of Europe. Part 2, Geological Survey of Finland, Espoo

    Google Scholar 

  • Elliott JE, Harris ML, Wilson LK, Smith BD, Batchelor SP, Maguire J (2007) Butyltins, trace metals and morphological variables in surf scoter (Melanitta perspicillata) wintering on the south coast of British Columbia, Canada. Environ Pollut 149:114–124

    Article  CAS  Google Scholar 

  • Falandysz J (2003) Butyltin and its degradation products in the aspects of food toxicology. Rocz Państw Zakl Hig 54:13–23

    CAS  Google Scholar 

  • Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117

    Article  CAS  Google Scholar 

  • Graceli JB, Sena GC, Lopes PF, Zamprogno GC, da Costa MB, Godoi AF et al (2013) Organotins: a review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol 36:40–52

    Article  CAS  Google Scholar 

  • Guruge KS, Tanabe S, Iwata H, Taksukawa R, Yamagishi S (1996) Distribution, biomagnification, and elimination of butyltin compound residues in common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. Arch Environ Contam Toxicol 31:210–217

    Article  CAS  Google Scholar 

  • Harding LE, Harris ML, Elliott JE (1998) Heavy and trace metals in wild mink (Mustela vison) and river otter (Lontra canadensis) captured on rivers receiving metals discharges. Bull Environ Contam Toxicol 61:600–607

    Article  CAS  Google Scholar 

  • Harino H, Fukushima MH, Kawai S (2000) Accumulation of butyltin and phenyltin compounds in various fish species. Arch Environ Contam Toxicol 39:13–19

    Article  CAS  Google Scholar 

  • Hiles R (1974) Absorption, distribution and excretion of inorganic tin in rats. Toxicol Appl Pharmacol 27:366–379

    Article  CAS  Google Scholar 

  • Horiguchi T, Li Z, Uno S, Shimizu M, Shiraishi H, Morita M et al (2004) Contamination of organotin compounds and imposex in molluscs from Vancouver, Canada. Mar Environ Res 57:75–88

    Article  CAS  Google Scholar 

  • Hsu MJ, Selvaraj K, Agoramoorthy G (2006) Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ Pollut 143:327–333

    Article  CAS  Google Scholar 

  • Huang J-H, Klemm O (2004) Atmospheric speciation of ionic organotin, organolead and organomercury compounds in NE Bavaria (Germany). Atmos Environ 38:5013–5023

    Article  CAS  Google Scholar 

  • ITRI (2012) Tin for tomorrow. Contributing to global sustainable development. Available http://www.itri.co.uk

  • ITRI (2016) The top 10 refined tin producers of 2015. Available https://www.itri.co.uk

  • Johnson MA, Greger JL (1982) Effects of dietary tin on tin and calcium metabolism of adult males. Am J Clin Nutr 35:655–660

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biochemistry of trace elements. PWN, Warszawa

    Google Scholar 

  • Kabata-Pendias A, Szteke B (2012) Trace elements in geo- and biosphere. IUNG-PIB, Puławy, pp 91–100

    Google Scholar 

  • Kadûnas V, Budavicius R, Gregorauskiene V, Katinas V, Klaugiene E, Radzevicius A et al (1999) Geochemical atlas of Lithuania. Geological Survey of Lithuania. Geology Institute, Vilnius

    Google Scholar 

  • Kannan K, Falandysz J (1997) Butyltin residues in sediment, fish, fish-eating birds, harbour porpoise and human tissues from the Polish coast of the Baltic Sea. Mar Pollut Bull 34:203–207

    Article  CAS  Google Scholar 

  • Kannan K, Corsolini S, Focardi S, Tanabe S, Tatsukawa R (1996) Accumulation pattern of butyltin compounds in dolphin, tuna and shark collected from the Italian coastal waters. Arch Environ Contam Toxicol 31:19–23

    Article  CAS  Google Scholar 

  • Kannan K, Senthilkumar K, Elliott JE, Feyk LA, Giesy JP (1998) Occurrence of butyltin compounds in tissues of water birds and sea ducks from the United States and Canada. Arch Environ Contam Toxicol 35:64–69

    Article  CAS  Google Scholar 

  • Kannan K, Agusa T, Evans TJ, Tanabe S (2007) Trace element concentrations in livers of polar bears from two populations in northern and western Alaska. Arch Environ Contam Toxicol 53:473–482

    Article  CAS  Google Scholar 

  • Kloke A, Sauerbeck D, Vetter H (1984) The contamination of plants and soil with heavy metals and the transport of metals in terrestrial food chain. In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, pp 113–141

    Chapter  Google Scholar 

  • Laws J, Heppell K, Sheahan D, Liu CF, Grey J (2016) No such thing as a free meal: organotin transfer across the freshwater–terrestrial interface. Freshw Biol 61:2051–2062

    Article  CAS  Google Scholar 

  • Lilley TM, Ruokolainen L, Meierjohann A, Kanerva M, Stauffer J, Laine VN et al (2013) Resistance to oxidative damage but not immunosuppression by organic tin compounds in natural populations of Daubenton’s bats (Myotis daubentonii). Comp Biochem Physiol Part C: Toxicol Pharmacol 157:298–305

    CAS  Google Scholar 

  • Llorens JF, Fernandez JL, Querol X (2000) The fate of trace elements in a large coal-fired power plant. Environ Geol 40:409–416

    Article  Google Scholar 

  • Maguire RJ, Tkacz RJ, Chau YK et al (1986) Occurrence of organotin compounds in water and sediment in Canada. Chemosphere 15:253–274

    Article  CAS  Google Scholar 

  • Martins V, Moreno T, Mendes L, Eleftheriadis K, Diapouli E, Alves CA et al (2016) Factors controlling air quality in different European subway systems. Environ Res 146:35–46

    Article  CAS  Google Scholar 

  • Miedico O, Iammarino M, Paglia G, Tarallo M, Mangiacotti M, Chiaravalle AE (2016) Environmental monitoring of the area surrounding oil wells in Val d’Agri (Italy): element accumulation in bovine and ovine organs. Environ Monit Assess 188:338

    Article  Google Scholar 

  • Migaszewski Z, Gałuszka A (2007) Fundamentals of environmental geochemistry. WNT, Warszawa

    Google Scholar 

  • Minguillóna MC, Querolb X, Baltenspergera U, Prevot AS (2012) Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci Total Environ 427–428:191–202

    Article  Google Scholar 

  • Mizukawa H, Takahashi S, Nakayama K, Sudo A, Tanabe S (2009) Contamination and accumulation feature of organotin compounds in common cormorants (Phalacrocorax carbo) from Lake Biwa, Japan. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S (eds) Interdisciplinary studies on environmental chemistry – environmental research in Asia. Terrapub, Tokyo, pp 153–161

    Google Scholar 

  • MSC (2014) Mineral commodity summaries 2014. U.S. Geological Survey, p 196. ISBN 978-1-4113-3765-7

    Google Scholar 

  • Nath R (2000) Tin. In: Nath R (ed) Health and disease role of micronutrients and trace elements: recent advances in the assessment of micronutrients and trace elements deficiency in humans. APH Publishing, New Delhi, pp 385–389

    Google Scholar 

  • Nganvongpanit K, Buddhachat K, Brown JL (2016) Comparison of bone tissue elements between normal and osteoarthritic pelvic bones in dogs. Biol Trace Elem Res 171:344–353

    Article  CAS  Google Scholar 

  • Okoro HK (2011) Sources, environmental levels and toxicity of organotin in marine environment: a review. Asian J Chem 23(2):473–482

    CAS  Google Scholar 

  • Ostrakhovitch EA (2013) Tin. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn, pp 1241–1286

    Google Scholar 

  • Pasieczna A (2012) Molybdenum and tin in soils of Poland. Biul Państw Inst Geol 450:75–82

    Google Scholar 

  • Peña-Fernández A, Lobo-Bedmar MC, González-Muñoz MJ (2015) Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain). Environ Res 136:40–46

    Article  Google Scholar 

  • Radecki J, Banaszkiewicz T, Klasa A (1989) The effect of different tin compounds on the mitotic activity of maize root tip cells. Acta Physiol Plant 4:359

    Google Scholar 

  • Reicks M, Rader JI (1990) Effects of dietary tin and copper on rat hepatocellular antioxidant protection. Proc Soc Exp Biol Med 195:123–128

    Article  CAS  Google Scholar 

  • Reimann C, Fabian K, Schilling J, Roberts D, Englmaier P (2015) A strong enrichment of potentially toxic elements (PTEs) in Nord-Trøndelag (central Norway) forest soil. Sci Total Environ 536:130–141

    Article  CAS  Google Scholar 

  • Schilithz PF, Dorneles PR, Lailson-Brito J (2013) Cetacean exposure to butyltin compounds: a review. Oecol Aust 17:411–423

    Article  Google Scholar 

  • Senesi GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377

    Article  CAS  Google Scholar 

  • Senthilkumar K, Kannan K, Tanabe S, Prudente M (1998) Butyltin compounds in resident and migrant birds collected from Philippines. Fresenius Environ Bull 7:561–571

    CAS  Google Scholar 

  • Shimasaki Y, Kitano T, Oshima Y, Inoue S, Imada N, Honjo T (2003) Tributyltin causes masculinization in fish. Environ Toxicol Chem 22:141–144

    Article  CAS  Google Scholar 

  • Strand J, Larsen MM, Lockyer C (2005) Accumulation of organotin compounds and mercury in harbor porpoises (Phocoena phocoena) from the Danish waters and West Greenland. Sci Total Environ 350:59–71

    Article  CAS  Google Scholar 

  • Takahashi H (1997) Huddling relationships in night sleeping groups among wild Japanese macaques in Kinkazan Island during winter. Primates 38:57–68

    Article  Google Scholar 

  • WHO (1980) World Health Organization: International Programme on Chemical Safety (WHO/IPCS). Environmental Health Criteria 15

    Google Scholar 

  • WHO (2004) Inorganic tin in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality, Geneva, World Health Organization (WHO/SDE/WSH/03.04/115)

    Google Scholar 

  • WHO (2005) Tin and inorganic tin compounds. World Health Organization, Geneva. Available http://www.who.int/ipcs/publications/cicad/cicad_65_web_version.pdf

  • Yamaguchi M, Sugii K, Okada S (1981) Action of inorganic tin on bone metabolism in rats – decreases in calcium content and phosphatase activity. J Toxicol Sci 6:238–239

    Google Scholar 

  • Yamaguchi M, Sugii K, Okada S (1982) Inhibition of collagen synthesis in the femur of rats orally administered stannous chloride. J Pharmacobiodyn 5:388–393

    Article  CAS  Google Scholar 

  • Yokoi K, Kimura M, Itokawa Y (1990) Effect of dietary tin deficiency on growth and mineral status in rats. Biol Trace Elem Res 24:223–231

    Article  CAS  Google Scholar 

  • Zhang G, Yan J, Fu JM, Parker A, Li XD, Wang ZS (2003) Butyltins in sediments and biota from the Pearl River Delta, South China. Chem Spec Bioavailab 14:35–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Tomza-Marciniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomza-Marciniak, A., Pilarczyk, B., Marciniak, A., Pilarczyk, R., Bąkowska, M. (2019). Tin, Sn. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_19

Download citation

Publish with us

Policies and ethics