Skip to main content

Silver, Ag

Abstract

The profile of silver (Ag) emission to the environment has changed significantly in recent decades. Although the photography industry has lost its importance, global Ag production continues, together with rising demand for nanosilver (nano-Ag), which is widely used in many products. Hence, increasing volumes of Ag waste are expected to be released into waters and on land. The results of experimental studies has demonstrated the hazardous impact of Ag/nano-Ag on mammalian organisms. However, the belief exists that Ag is extremely toxic for aquatic species only, so studies conducted on terrestrial wildlife are scarce. The data presented here indicate that Ag accumulates in high amounts in the soft tissues and bones of the investigated mammals and birds. It also appears to be present in higher concentrations in liver and brain, which could, hence, be pointed to as target organs. In addition, birds inhabiting aquatic areas and those connected with aquatic food chains seem to be suitable bioindicators of water-body contamination, whereas small birds, such as the great tit, may be useful indicators of urban pollution. Consideration should also be given to the value of current observations concerning the close relation between the presence of Ag in organisms and their environments. It should also be highlighted that detailed studies on avian and mammalian terrestrial wildlife merits high priority in order to evaluate the possible hazardous impact of increased environmental emission of Ag and nano-Ag.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agusa T, Matsumoto T, Ikemoto T, Anan Y, Kubota R, Yasunaga G et al (2005) Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs. Environ Toxicol Chem 24:2107–2120

    CrossRef  CAS  Google Scholar 

  • Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ et al (2008) DNA damage response to different surface chemistry of Ag nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    CrossRef  CAS  Google Scholar 

  • Ahlberg S, Antonopulos A, Diendorf J, Dringen R, Epple M, Flöck R et al (2014) PVP-coated, negatively charged silver nanoparticles: a multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Beilstein J Nanotechnol 5:1944–1965

    CrossRef  CAS  Google Scholar 

  • Akaighe N, MacCuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M et al (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45:3895–3901

    CrossRef  CAS  Google Scholar 

  • Apostoli P, De Palma G, Catalani S, Bortolotti F, Tagliaro F (2009) Multielemental analysis of tissues from Cangrande della Scala, Prince of Verona, in the 14th Century. J Anal Toxicol 33:322–327

    CrossRef  CAS  Google Scholar 

  • AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    CrossRef  CAS  Google Scholar 

  • ATSDR (1990) Toxicological profile for silver. US Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA, (TP-90-24) pp 145

    Google Scholar 

  • Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S et al (2012) Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology 6:912–922

    CrossRef  CAS  Google Scholar 

  • Barillo DJ, Marx DE (2014) Silver in medicine: a brief history BC 335 to present. Burns 40(suppl):S3–S8

    CrossRef  Google Scholar 

  • Baldi C, Minoia C, Di Nucci A, Capodaglio E, Manzo L (1988) Effects of silver in isolated rat hepatocytes. Toxicol Lett 41:261–268

    CrossRef  CAS  Google Scholar 

  • Blaser SA, Sheringer M, Macleod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nanofunctionalized plastics and textiles. Sci Total Environ 390:396–409

    CrossRef  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    CrossRef  CAS  Google Scholar 

  • Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager J et al (2010) Silver nanoparticles disrupt GDNF/Fyn kinase signalling in spermatogonial stem cells. Toxicol Sci 116:577–589

    CrossRef  CAS  Google Scholar 

  • Bremner I, Beattie JH (1990) Metallothionein and the trace minerals. Annu Rev Nutr 10:63–83

    CrossRef  CAS  Google Scholar 

  • Call RA, Greenwood DA, Lecheminant WH, Shupe JL, Nielsen HM, Olson LE et al (1965) Histological and chemical studies in man on effects of fluoride. Public Health Rep 80:529–538

    CrossRef  CAS  Google Scholar 

  • CEC (1996) Commission of the European Communities. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances. Part II, Environmental Risk Assessment, Luxembourg

    Google Scholar 

  • Charley RC, Bull AT (1979) Bioaccumulation of silver by multispecies community of bacteria. Arch Microbiol 123:239–244

    CrossRef  CAS  Google Scholar 

  • Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–4432

    CrossRef  CAS  Google Scholar 

  • Choi O, Cleuenger TE, Deng BL, Surampalli RY, Ross L, Hu ZQ (2009) Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Res 43:1879–1886

    CrossRef  CAS  Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann TH (2008) Nanoparticles: structure, properties preparation and behaviour in environmental media. Ecotoxicology 17:326–343

    CrossRef  CAS  Google Scholar 

  • Cleveland D, Long SE, Pennington PL, Cooper E, Fulton MH, Scott GI et al (2012) Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products. Sci Tot Environ 421–422:267–272

    CrossRef  CAS  Google Scholar 

  • Connors PG, Anderlini VC, Risebrough RW, Martin JH, Schroeiber RW, Anderson DW (1972) Heavy metal concentrations in brown pelicans from Florida and California. Cal-Neva Wildlife 56–64

    Google Scholar 

  • Danscher G (1981) Light and electron microscopic localization of silver in biological tissue. Histochemistry 71:177–186

    CrossRef  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M (1999) Are eggshell and egg contents of great and blue tits suitable indicators of heavy metal pollution? Belg J Zool 129:439–447

    Google Scholar 

  • Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2003) Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environ Pollut 124:429–436

    CrossRef  CAS  Google Scholar 

  • Dauwe T, Bervoets L, Pinxten R, Blust R, Eens M (2004) Relationships between metal concentrations in great tit nestlings and their environment and food. Environ Pollut 131:373–380

    CrossRef  CAS  Google Scholar 

  • Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal concentrations in female laying great tits (Parus major) and their clutches. Arch Environ Contam Toxicol 49:249–256

    CrossRef  CAS  Google Scholar 

  • Dehn LA, Follmann EH, Thomas DL, Sheffield GG, Rosa C, Duffy LK, O’Hara TM (2006) Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci Total Environ 362:103–123

    CrossRef  CAS  Google Scholar 

  • D’Havé H, Scheirs J, Mubiana VK, Verhagen R, Blust R, De Coen W (2006) Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus). II. Hair and spines as indicators of endogenous metal and as concentrations. Environ Pollut 142:438–448

    CrossRef  CAS  Google Scholar 

  • Dos Santos C, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103:1931–1944

    CrossRef  CAS  Google Scholar 

  • Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49:575–585

    CAS  Google Scholar 

  • Eckelman MJ, Graedel TE (2007) Silver emissions and their environmental impacts: a multilevel assessment. Environ Sci Technol 41:6283–6289

    CrossRef  CAS  Google Scholar 

  • EEA (2001) Sewage sludge—a future waste problem? European Environmental Agency, Indicator Fact Sheet Signals, EEA, Copenhagen. http://themes.eea.europa.eu/Environmental_issues/waste/indicators/sewage/w5_sludge.pdf

  • Eisler R (1996) Silver hazards to fish, wildlife, and invertebrates: a synoptic review. US National Biological Service Biological Report 32

    Google Scholar 

  • El Mahdy MM, Eldin TAS, Aly HS, Mohammed FF, Shaalan MI (2015) Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol 46:21–29

    CrossRef  CAS  Google Scholar 

  • Ericson JE, Smith DR, Flegal AR (1991) Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians. Environ Health Perspect 93:217–223

    CrossRef  CAS  Google Scholar 

  • Ernst E, Rungby J, Baatrup E (1991) Ultrastructural localization of silver in rat testis and organs distribution of radioactive silver in the rat. J Appl Toxicol 11:317–321

    CrossRef  CAS  Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531

    CrossRef  CAS  Google Scholar 

  • Falandysz J, Ichihashi H, Mizera T, Yamasaki S (2000) Mineral composition of selected tissues and organs of white-tailed eagle. Rocz PZH 51:1–5 (in Polish)

    CAS  Google Scholar 

  • Falandysz J, Ichihashi H, Szymczyk K, Yamasaki S, Mizera T (2001) Metallic elements and metal poisoning among white-tailed sea eagles from the Baltic South coast. Mar Pollut Bull 42:1190–1193

    CrossRef  CAS  Google Scholar 

  • Fewtrell L (2014) Silver: water disinfection and toxicity. Centre for Research into Environment and Health, 55 pp

    Google Scholar 

  • Fredricks TB, Fedynich AM, Benn S, Ford L (2009) Environmental contaminants in white-winged doves (Zenaida asiatica asiatica) from the Lower Rio Grande Valley of Texas, USA. Arch Environ Contam Toxicol 57:387–396

    CrossRef  CAS  Google Scholar 

  • Fung MC, Bowen DL (1996) Silver products for medical indications: risk-benefit assessment. J Toxicol Clin Toxicol 34:119–126

    CrossRef  CAS  Google Scholar 

  • Furchner JE, Richmond CR, Drake GA (1968) Comparative metabolism of radionuclide in mammals-IV. Retention of silver-110m in the mouse, rat, monkey and dog. Health Phys 15:505–514

    CrossRef  CAS  Google Scholar 

  • Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 86–143

    CrossRef  Google Scholar 

  • Furst A, Schlauder MC (1978) Inactivity of two noble metals as carcinogens. J Environ Pathol Toxicol 1:51–57

    CAS  Google Scholar 

  • Gaillet S, Rouanet JM (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol 77:58–63

    CrossRef  CAS  Google Scholar 

  • Gao Y, Luo Z, He N, Wang MK (2013) Metallic nanoparticle production and consumption in China between 2000 and 2010 and associative aquatic environmental risk assessment. J Nanopart Res 15:168

    Google Scholar 

  • Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomed 9:2399–2407

    Google Scholar 

  • Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332

    CrossRef  Google Scholar 

  • Gough LP, Shacklette HT, Case AA (1979) Element concentrations toxic to plants, animals, and man. In: Geological Survey Bulletin 1466, An appraisal of the toxicity hazard to plants, animals, and man from natural and manmade element concentrations of environmental concern. United States Government Printing Office, Washington, DC, pp 44–46

    Google Scholar 

  • Gromadzka-Ostrowska J, Dziendzikowska K, Lankoff A, Dobrzyńska M, Instanes C, Brunborg G et al (2012) Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett 214:251–258

    CrossRef  CAS  Google Scholar 

  • Gulbranson SH, Hud JA, Hansen RC (2000) Argyria following the use of dietary supplements containing colloidal silver protein. Cutis 66:373–376

    CAS  Google Scholar 

  • Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7

    CrossRef  CAS  Google Scholar 

  • Hadrup N, Loeschner K, Mortensen A, Sharma AK, Qvortrup K, Larsen EH et al (2012) The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. Neurotoxicology 33:416–423

    CrossRef  CAS  Google Scholar 

  • Hamilton EI, Minski MJ, Cleary JJ (1972) The concentration and distribution of some stable elements in healthy human tissues from the United Kingdom. Sci Total Environ 1:341–374

    CrossRef  Google Scholar 

  • Hiriart-Baer VP, Fortin C, Lee DY, Campbell PG (2006) Toxicity of silver to two freshwater algae Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: influence of thiosulphate. Aquat Toxicol 78:136–148

    CrossRef  CAS  Google Scholar 

  • Horai S, Minagawa M, Ozaki H, Watanabe I, Takeda Y, Yamada K et al (2006) Accumulation of Hg and other heavy metals in the Javan mongoose (Herpestes javanicus) captured on Amamioshima Island, Japan. Chemosphere 65:657–665

    CrossRef  CAS  Google Scholar 

  • Iavicoli I, Fontana L, Leso V, Bergamaschi A (2013) The effects of nanomaterials as endocrine disruptors. Int J Mol Sci 14:16732–16801

    CrossRef  CAS  Google Scholar 

  • Ikemoto T, Kunito T, Tanabe S, Tsurumi M, Sato F, Oka N (2005) Non-destructive monitoring of trace element levels in short-tailed albatrosses (Phoebastria albatrus) and black-footed albatrosses (Phoebastria nigripes) from Torishima Island, Japan using eggs and blood. Mar Poll Bull 51:889–895

    CrossRef  CAS  Google Scholar 

  • Janssens E, Dauwe T, Bervoets L, Eens M (2001) Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ Toxicol Chem 20:2815–2820

    CrossRef  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119

    CrossRef  CAS  Google Scholar 

  • Kim WY, Kim J, Park JD, Ryu HY, Yu IJ (2009) Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. J Toxicol Environ Health A 72:1279–1284

    CrossRef  CAS  Google Scholar 

  • Kim B, Park C-S, Murayama M, Hochella MF (2010a) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514

    CrossRef  CAS  Google Scholar 

  • Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH et al (2010b) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20

    CrossRef  CAS  Google Scholar 

  • Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS et al (2011) In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work 2:34–38

    CrossRef  CAS  Google Scholar 

  • Klein C, Hurlbut CS (1985) Manual of mineralogy, 20th edn. Wiley, New York, pp 271–272

    Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    CrossRef  CAS  Google Scholar 

  • Kramer JR, Benoit G, Bowles KC, DiToro DM, Herrin RT, Luther GW III et al (2002) Environmental chemistry of silver. In: Andren AW, Bober TW (eds) Silver in the environment: transport, fate, and effects. SETAC, Pensacola, FL

    Google Scholar 

  • Kuo H-W, Kuo S-M, Chou C-H, Lee T-C (2000) Determination of 14 elements in Taiwanese bones. SciTotal Environ 255:45–54

    CAS  Google Scholar 

  • Lande E (1977) Heavy metal pollution in Trondheimsfjorden, Norway, and the recorded effects on the fauna and flora. Environ Pollut 12:187–198

    CrossRef  CAS  Google Scholar 

  • Lansdown AB (2007) Critical observations on the neurotoxicity of silver. Crit Rev Toxicol 37:237–250

    CrossRef  CAS  Google Scholar 

  • Leite PE, Pereira MR, Granjeiro JM (2015) Hazard effects of nanoparticles in central nervous system: searching for biocompatible nanomaterials for drug delivery. Toxicol In Vitro 29:1653–1660

    CrossRef  CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46:6900–6914

    CrossRef  CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2013) Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions. Environ Sci Technol 47:10293–10301

    CAS  Google Scholar 

  • Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    CrossRef  CAS  Google Scholar 

  • Liu J, Wang Z, Liu FD, Kane AB, Hurt RH (2012) Chemical transformations of nanosilver in biological environments. ACS Nano 6:9887–9899

    CrossRef  CAS  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18

    CrossRef  CAS  Google Scholar 

  • Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies and the PEW Charitable Trusts, Washington, DC

    Google Scholar 

  • Luoma SN, Ho YB, Bryan GW (1995) Fate, bioavailability and toxicity of silver in estuarine environment. Mar Poll Bull 31:44–54

    CrossRef  CAS  Google Scholar 

  • Luther GW, Rickard DT (2005) Metal sulfide cluster complexes and their biogeochemical importance in the environment. J Nanopart Res 7:389–407

    CrossRef  CAS  Google Scholar 

  • Mahabady MK (2012) The evaluation of teratogenicity of nanosilver on skeletal system and placenta of rat foetuses in prenatal period. Afr J Pharm Pharmacol 6:419–424

    CAS  Google Scholar 

  • Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73:1417–1423

    CrossRef  CAS  Google Scholar 

  • Markowski M, Kaliński A, Skwarska J, Wawrzyniak J, Bańbura M, Markowski J et al (2013) Avian Feathers as bioindicators of the exposure to heavy metal contamination of food. Bull Environ Contam Toxicol 91:302–305

    CrossRef  CAS  Google Scholar 

  • Marshall JP, Shneider RP (1977) Systemic argyria secondary to topical silver nitrate. Arch Dermatol 113:1077–1079

    CrossRef  Google Scholar 

  • Massarsky A, Trudeau VL, Moon TW (2014) Predicting the environmental impact of nanosilver. Environ Toxicol Pharmacol 38:861–873

    CrossRef  CAS  Google Scholar 

  • Matuk Y, Gosh M, McCulloch C (1981) Distribution of silver in the eyes and plasma proteins of the albino rat. Can J Ophthalmol 16:145–150

    CAS  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    CrossRef  CAS  Google Scholar 

  • Mierzykowski SE, Smith JEM, Todd CS, Kusnierz D, DeSorbo CR (2011) Liver contaminants in bald eagle carcasses from Maine. USFWS. Spec. Proj. Rep. FY09-MEFO-6-EC. Maine Field Office, Orono, ME, 53 pp

    Google Scholar 

  • Mody W, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289

    CrossRef  CAS  Google Scholar 

  • Murata T, Kanao-Koshikawa M, Takamatsu T (2007) Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water Air Soil Pollut 164:103–118

    CrossRef  CAS  Google Scholar 

  • Nam D-H, Anan Y, Ikemoto T, Okabe Y, Kim E-Y, Subramanian A et al (2005a) Specific accumulation of 20 trace elements in great cormorants (Phalacrocorax carbo) from Japan. Environ Pollut 134:503–514

    CrossRef  CAS  Google Scholar 

  • Nam D-H, Anan Y, Ikemoto T, Tanabe S (2005b) Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds. Mar Pollut Bull 50:1347–1362

    CrossRef  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–662

    CrossRef  CAS  Google Scholar 

  • Nordberg GF, Gerhardsson L (1988) Silver. In: Seiler HG, Sigel H, Sigel A (eds) Handbook on toxicity of inorganic compounds. Marcel Dekker, New York, pp 619–623

    Google Scholar 

  • Ohlendorf HM, Lowe RW, Kelly PR, Harvey TE (1986) Selenium and heavy metals in San Francisco Bay diving ducks. J Wildl Manage 50:64–71

    CrossRef  CAS  Google Scholar 

  • Olcott CT (1948) Experimental argyrosis. Morphologic changes in the experimental animal. Am J Pathol 24:813–833

    CAS  Google Scholar 

  • Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy, vol II. Wiley, New York, pp 11–15

    Google Scholar 

  • Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30:162–168

    CrossRef  CAS  Google Scholar 

  • Phalen RF, Morrow PE (1973) Experimental inhalation of metallic silver. Health Phys 24:509–518

    CrossRef  CAS  Google Scholar 

  • Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201:92–100

    CrossRef  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109

    CrossRef  Google Scholar 

  • Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA (2013) Toxicity of silver nanoparticles in macrophages. Small 9:2576–2584

    CrossRef  CAS  Google Scholar 

  • Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21

    CrossRef  CAS  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds. A review. Environ Toxicol Chem 18:89–108

    CrossRef  CAS  Google Scholar 

  • Rejeski D (2011) Project on Emerging Nanotechnologies. Woodrow Wilson International Center for Scholars, Washington DC

    Google Scholar 

  • Rosenman KD, Moss A, Kon S (1979) Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Med 21:430–435

    CAS  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford, pp 1–70

    Google Scholar 

  • Rungby J (1986) Exogenous silver in dorsal root ganglia, peripheral nerve, enteric ganglia, and adrenal medulla. Acta Neuropathol 69:45–53

    CrossRef  CAS  Google Scholar 

  • Rungby J, Danscher G (1983) Localization of exogenous silver in brain and spinal cord of silver exposed rats. Acta Neuropathol 60:92–98

    CrossRef  CAS  Google Scholar 

  • Rungby J, Danscher G (1984) Hypoactivity in silver exposed mice. Acta Pharmacol Toxicol 55:398–401

    CrossRef  CAS  Google Scholar 

  • Rush SA, Borga K, Dietz R, Born EW, Sonne C, Evans T et al (2008) Geographic distribution of selected elements in the livers of polar bears from Greenland, Canada and the United States. Environ Poll 153:618–626

    CrossRef  CAS  Google Scholar 

  • Scanlon PF, Oderwald RG, Dietrick TJ, Coggin JL (1980) Heavy metal concentrations in feathers of ruffed grouse shot by Virginia hunters. Bull Environ Contam Toxicol 25:947–949

    CrossRef  CAS  Google Scholar 

  • Schirmer K, Behra R, Sigg L, Suter MJ-F (2013) Ecotoxicological aspects of nanomaterials in the aquatic environment. In: Luther W, Zweck A (eds) Safety aspects of engineered nanomaterials. Pan Stanford, Singapore, pp 141–162

    Google Scholar 

  • Schweinfurt SP (2009) An introduction to coal quality. In: Pierce BS, Dennen KO (eds) The National Coal Resource Assessment Overview. U.S. Geological Survey, Reston, VA, pp 1–16

    Google Scholar 

  • Scott T, Norman PM (1980) A silver deposition in arteriolar basal laminae in the cerebral cortex of argyric rats. Acta Neuropathol 52:243–246

    CrossRef  CAS  Google Scholar 

  • Settimio L, McLaughlin MJ, Kirby JK, Langdon KA, Janik L, Smith S (2015) Complexation of silver and dissolved organic matter in soil water extracts. Environ Pollut 199:174–184

    CrossRef  CAS  Google Scholar 

  • Shafer MM, Overdier JT, Armstong DE (1998) Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ Toxicol Chem 17:630–641

    CrossRef  CAS  Google Scholar 

  • Sharma HS, Sharma A (2007) Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273

    CrossRef  CAS  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 204:15–34

    CrossRef  CAS  Google Scholar 

  • Skalska J, Frontczak-Baniewicz M, Strużyńska L (2015) Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology 46:145–154

    CrossRef  CAS  Google Scholar 

  • Smith IC, Carson BL (1977) Trace metals in the environment. V. 2: Silver. Ann Arbor Science, Ann Arbor, MI pp 469

    Google Scholar 

  • Soderstjerna E, Johansson F, Klefbohm B, Englund Johansson U (2013) Gold- and silver nanoparticles affect the growth characteristics of human embryonic neural precursor cells. PLoS One 8:e58211

    CrossRef  CAS  Google Scholar 

  • Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, Thorne PS (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 8:5

    CrossRef  CAS  Google Scholar 

  • Stephens T (2005) Survey finds silver contamination in North Pacific waters, probably from industrial emissions in Asia. UC Santa Cruz Curr 9(28):14–20

    Google Scholar 

  • Stokinger HE (1981) Silver. In: Clayton E, Clayton P (eds) Industrial hygiene and toxicology, vol 2A. Wiley, New York, pp 1881–1894

    Google Scholar 

  • Strużyński W, Dąbrowska-Bouta B, Grygorowicz T, Zieminska E, Strużynska L (2014) Markers of oxidative stress in hepatopancreas of crayfish (Orconectes limosus, Raf.) experimentally exposed to nanosilver. EnvironToxicol 29:1283–1291

    Google Scholar 

  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461

    CrossRef  CAS  Google Scholar 

  • Tamimi SO, Zmeili SM, Gharaibeh MN, Shubair MS, Salhab AS (1998) Toxicity of a new antismoking mouthwash 881010 in rats and rabbits. J Toxicol Environ Health A 53:47–60

    CrossRef  CAS  Google Scholar 

  • Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Yuan F, Xi T (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 9:4924–4932

    CrossRef  CAS  Google Scholar 

  • Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270:189–194

    CrossRef  CAS  Google Scholar 

  • Tripathy SK (2008) Nanophotothermolysis of poly-(vinyl) alcohol capped silver particles. Nanoscale Res Lett 3:164–167

    CrossRef  CAS  Google Scholar 

  • US EPA (1980) Ambient water quality criteria for silver. Environmental Protection Agency

    Google Scholar 

  • US EPA (1985) Drinking water criteria document for silver. Environmental Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-026, PB86-118288

    Google Scholar 

  • US EPA (1997) Silver, CASRN 7440-22-4. Integrated Risk Information System, IRI

    Google Scholar 

  • US EPA (2003) Guidance for developing ecological soil screening levels (Eco-SSLs). Review of background concentrations for metals. Attachment 1–4

    Google Scholar 

  • US EPA (2006) Environmental Protection Agency Office of Solid Waste and Emergency Response Ecological Soil Screening Levels for Silver. OSWER Directive 9285.7-77. Washington, DC

    Google Scholar 

  • US PHS (1990) Toxicological profile for silver. Agency for Toxic Substances and Disease Registry Public Health Service, pp 1–157

    Google Scholar 

  • Van der Zande M, Vandebriel RJ, Van DE, Kramer E, Herrera Rivera Z, Serrano-Rojero CS et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442

    CrossRef  CAS  Google Scholar 

  • Venugopal B, Luckey TD (1978) Metal toxicity in mammals. Vol. 2: chemical toxicity of metals and metalloids. Plenum Press, New York

    Google Scholar 

  • Vermeer K, Peakall DB (1979) Trace metals in seaducks of the Fraser River delta intertidal area, British Columbia. Mar Pollut Bull 10:189–191

    CrossRef  CAS  Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Poll 157:1171–1177

    CrossRef  CAS  Google Scholar 

  • WHO (2002) Concise International Chemical Assessment Document 44. Silver and silver compounds: environmental aspects. World Health Organization, Geneva

    Google Scholar 

  • Wieser ME, Holden N, Coplen TB, Böhlke JK, Berglund M, Brand WA et al (2013) Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem 85:1047–1078

    CrossRef  CAS  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW et al (2009) Nanosilver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    CrossRef  CAS  Google Scholar 

  • Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173

    CrossRef  CAS  Google Scholar 

  • WWC (2013) Consumer products inventory: an inventory of nanotechnology-based consumer products introduced on the market. Woodrow Wilson Center: Project on Nanotechnology, Washington, DC. http://www.nanotechproject.org/cpi

  • Yang J, Miyazaki N, Kunito T, Tanabe S (2006) Trace elements and butyltins in a Dall’s porpoise (Phocoenoides dalli) from the Sanriku coast of Japan. Chemosphere 63:449–457

    CrossRef  CAS  Google Scholar 

  • Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z et al (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7(Suppl 4):S411–S422

    CAS  Google Scholar 

  • Yaroshevsky AA (2006) Abundances of chemical elements in the Earth’s crust. Geochem Int 44:48–55

    CrossRef  Google Scholar 

  • Yin N, Liu Q, Liu J, He B, Cui L, Li Z et al (2013) Silver nanoparticle exposure attenuates the viability of rat cerebellum granule cells through apoptosis coupled to oxidative stress. Small 9:1831–1841

    CrossRef  CAS  Google Scholar 

  • Yoo-iam M, Chaichana R, Satapanajaru T (2014) Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver barb (Barbonymus gonionotus). Chem Spec Bioavil 26:257–265

    CrossRef  CAS  Google Scholar 

  • Zaichick S, Zaichick V (2015) The content of silver, cobalt, chromium, iron, mercury, rubidium, antimony, selenium, and zinc in osteogenic sarcoma. J Cancer Ther 6:493–503

    CrossRef  CAS  Google Scholar 

  • Zhao X, Toyooka T, Ibuki Y (2014) Silver ions enhance UVB-induced phosphorylation of histone H2AX. Environ Mol Mutagen 55:556–565

    CrossRef  CAS  Google Scholar 

  • Ziemińska E, Strużyńska L (2016) Zinc modulates nanosilver-induced toxicity in primary neuronal cultures. Neurotox Res 29:325–343

    CrossRef  CAS  Google Scholar 

  • Ziemińska E, Stafiej A, Strużyńska L (2014) The role of the glutamatergic NMDA receptor in nanosilver-evoked neurotoxicity in primary cultures of cerebellar granule cells. Toxicology 315:38–48

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Strużyńska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strużyńska, L. (2019). Silver, Ag. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_18

Download citation