Skip to main content

Arsenic, As

  • 432 Accesses

Abstract

Arsenic is a semimetal that forms a part of more than 200 minerals. In many places of the world concentrations of arsenic in water are high, which is an issue of high importance in connection with human health. It has three allotrope forms; the gray one is the most common. Among numerous arsenic isotopes only 75As is stable. The element is produced mainly in the form of a trioxide. Arsenic is used in electronic, metallurgy, pesticides, and defoliants. The most common use is in the production of wood preservatives (which, along with fossil fuel combustion, represents the largest anthropogenic arsenic source in the environment). In some parts of the world arsenic compounds are used as a supplement in poultry farming. Recent research also shows its potential use in medicine. Arsenic toxicity depends on its form (organic and inorganic), as well as on its oxidation state, solubility, and species exposed. In the body, the methylation of its inorganic form takes place mainly in the liver. Following exposure to arsenic, it can be found in various tissues, organs and materials, as kidneys, blood, lungs, feathers, hair, and fur, but mainly in the liver. Arsenic bioaccumulation is low, and biomagnification is still questioned in terrestrial ecosystems. Some biomarkers of exposure, apart from concentration measurements (especially in urine, blood, hair, fur, and feathers) may be used. Among internal tissues, the liver is the most commonly studied.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00121-6_13
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00121-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3

References

  • Adriano DC (2001) Arsenic. In: Trace elements in the terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York, pp 219–261

    CrossRef  Google Scholar 

  • Ai-zhi C, Zhen-yong W (2007) Effect of different supplemented arsenic preparation on growth of body weight and main immune organs in chickens. J Domest Anim Ecol 1:63–65

    Google Scholar 

  • Andrade VM, Mateus ML, Batoreu MC, Aschner M, Marreilha dos Santos AP (2015) Lead, arsenic, and manganese metal mixture exposures: focus on biomarkers of effect. Biol Trace Elem Res 166:13–23

    CAS  CrossRef  Google Scholar 

  • Andreae MO (1978) Distribution and speciation of arsenic in natural waters and some marine algae. Deep Sea Res 25:391–402

    CAS  CrossRef  Google Scholar 

  • Anke M (1986) Arsenic. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2. Academic Press, New York, pp 347–372

    CrossRef  Google Scholar 

  • Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist 6(Suppl 2):1–2

    CAS  CrossRef  Google Scholar 

  • Aso T, Abiko Y (1978) Tissue distribution of arsenic after subcutaneous implantation of arsenic trioxide pellet in rats. J Toxicol Sci 3:109–116

    CAS  CrossRef  Google Scholar 

  • ATSDR (2007a) ToxGuide for Arsenic. CAS # 7440-38-2. U.S Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • ATSDR (2007b) Toxicological Profile for Arsenic. Agency for Toxic Substances and Disease, Atlanta

    Google Scholar 

  • Berglund ÅMM, Rainio MJ, Eeva T (2012) Decreased metal accumulation in passerines as a result of reduced emissions. Environ Toxicol Chem 31:1317–1323

    CAS  CrossRef  Google Scholar 

  • Binkowski ŁJ (2012) The effect of material preparation on the dry weight used in trace elements determination in biological samples. Fresenius Environ Bull 21:1956–1960

    CAS  Google Scholar 

  • Buchet JP, Apostoli P, Lison D (1998) Arsenobetaine is not a major metabolite of arsine gas in the rat. Arch Toxicol 72:706–710

    CAS  CrossRef  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Toxicol 5:203–311

    Google Scholar 

  • Chao D-Y, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao F-J, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    CrossRef  Google Scholar 

  • Chen LC, Lippmann M (2009) Effects of metals within ambient air particulate matter (PM) on human health. Inhal Toxicol 21:1–31

    CrossRef  CAS  Google Scholar 

  • Chen CJ, Hsu LI, Wang CH, Shih WL, Hsu YH, Tseng MP et al (2005) Biomarkers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicol Appl Pharmacol 206:198–206

    CAS  CrossRef  Google Scholar 

  • Cullen WR (2014) Chemical mechanism of arsenic biomethylation. Chem Res Toxicol 27:457–461

    CAS  CrossRef  Google Scholar 

  • Dart RC (2004) Medical toxicology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Davidson CI, Wiersma GB, Brown KW, Goold WD, Mathison TP, Reilly MT (1985) Airborne trace elements in Great Smoky Mountains, Olympic, and Glacier National Parks. Environ Sci Technol 19:27–35

    CrossRef  Google Scholar 

  • Drouhot S, Raoul F, Crini N, Tougard C, Prudent AS, Druart C, Rieffel D, Lambert JC, Tête N, Giraudoux P, Scheifler R (2014) Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Sci Total Environ 470–471:1012–1022

    CrossRef  CAS  Google Scholar 

  • Ducoff HS, Neal WB, Straube R, Jacobson L, Brues A (1948) Biological studies with arsenic; excretion and tissue localization. Proc Soc Exp Biol Med 69:548–554

    CAS  CrossRef  Google Scholar 

  • Dudka I, Kossowska B, Senhadri H, Latajka R, Hajek J, Andrzejak R, Antonowicz-Juchniewicz J, Gancarz R (2014) Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study. Environ Int 68:71–81

    CAS  CrossRef  Google Scholar 

  • Duffus JH (2002) “Heavy metals” – a meaningless term? Pure Appl Chem 74:793–807

    CAS  CrossRef  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    CAS  CrossRef  Google Scholar 

  • EEA (2016) European Union emission inventory report 1990–2014 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). Europaen Environment Agency

    Google Scholar 

  • Eisler R (1988) Arsenic hazards to fish, wildlife, and invertabrates: a synoptic review. Patuxent Wildlife Research Center, Laurel

    Google Scholar 

  • EPA (1998) Integrated risk information system – arsenic, inorganic (CASRN 7440-38-2). Europaen Environment Agency

    Google Scholar 

  • Erry BV, MacNair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Britain. Environ Pollut 110:179–187

    CAS  CrossRef  Google Scholar 

  • EU (2005) Directive 2004/107/EC of the European Parliament and of the Council of 15/12/2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off J Eur Union 23:3–16

    Google Scholar 

  • EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–43

    Google Scholar 

  • FDA (2011) Questions and answers regarding 3-nitro (roxarsone). In: U.S. Food Drug Administration website http://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm258313.htm. Accessed 30 Sep 2015

  • Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    CrossRef  CAS  Google Scholar 

  • Firkin F (2014) Carcinogenic risk of retained arsenic after successful treatment of acute promyelocytic leukemia with arsenic trioxide: a cause for concern? Leuk Lymphoma 55:977–978

    CrossRef  Google Scholar 

  • García-Sevillano MÁ, García-Barrera T, Gómez-Ariza JL (2015) Environmental metabolomics: biological markers for metal toxicity. Electrophoresis 36:2348–2365

    CrossRef  CAS  Google Scholar 

  • Garcia-Vargas GG, Hernandez-Zavala A (1996) Urinary porphyrins and heme biosynthetic enzyme activities measured by HPLC in arsenic toxicity. Biomed Chromatogr 10:278–284

    CrossRef  Google Scholar 

  • Gebel T (2000) Confounding variables in the environmental toxicology of arsenic. Toxicology 144:155–162

    CAS  CrossRef  Google Scholar 

  • Geiger A, Cooper J (2010) Overview of airborne metal regulations, exposure limits, health effects and contemporary research. Cooper Environmental Services, Portland

    Google Scholar 

  • Goede AA (1985) Mercury, selenium, arsenic and zinc in waders from the Dutch Wadden Sea. Environ Pollut 37:287–309

    CAS  CrossRef  Google Scholar 

  • Goede AA, De Bruin M (1984) The use of bird feather parts as a monitor for metal pollution. Environ Pollut 8:281–298

    CAS  CrossRef  Google Scholar 

  • Goede AA, Nygard T, de Bruin M, Steinnes E (1989) Selenium, mercury, arsenic and cadmium in the lifecycle of the dunlin, Calidris alpina, a migrant wader. Sci Total Environ 78:205–218

    CAS  CrossRef  Google Scholar 

  • Graeme KA, Pollack CV (1998) Heavy metal toxicity, part I: arsenic and mercury. J Emerg Med 16:45–56

    CAS  CrossRef  Google Scholar 

  • Grund SC, Hanusch K, Wolf HU (2005) Arsenic and arsenic compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim, pp 31–34

    Google Scholar 

  • Guerreiro CBB, Foltescu V, De Leeuw F (2014) Air quality status and trends in Europe. Atmos Environ 98:376–384. https://doi.org/10.1016/j.atmosenv.2014.09.017

    CAS  CrossRef  Google Scholar 

  • Halder G, Mondal S, Paul SK, Roy B, Samanta G (2007) Chronic arsenic toxicity with and without excess supplementation of methionine on the performance and metabolizability of nutrients in layer chicken. Asian J Anim Sci 1:18–25

    CAS  CrossRef  Google Scholar 

  • Hall SL, Fisher FM (1985) Lead concentrations in tissues of marsh birds: relationship of feeding habits and grit preference to spent shot ingestion. Bull Environ Contam Toxicol 35:1–8

    CAS  CrossRef  Google Scholar 

  • Hammond CR (2004) The elements. In: Lide DR (ed) CRC Handbook of chemistry and physics, 86th edn. CRC Press, Boca Raton, pp 1–34

    Google Scholar 

  • Harrisson JW, Packman EW, Abbott DD (1958) Acute oral toxicity and chemical and physical properties of arsenic trioxides. AMA Arch Ind Health 17:118–123

    CAS  Google Scholar 

  • Haynes WM (2014) Handbook of chemistry & physics, 95th edn. CRC Press, Boca Raton

    Google Scholar 

  • Henke KR (2009) Arsenic: environmental chemistry, health threats and waste treatment. John Wiley & Sons, Chichester

    CrossRef  Google Scholar 

  • Hoffman DJ, Sanderson CJ, LeCaptain LJ, Cromartie E, Pendleton GW (1992) Interactive effects of arsenate, selenium, and dietary protein on survival, growth, and physiology in mallard ducklings. Arch Environ Contam Toxicol 22:55–62

    CAS  CrossRef  Google Scholar 

  • IARC (2012) IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. A review of human carcinogens. Part C: arsenic, metals, fibres, and dusts. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Islam MS, Awal MA, Mostofa M, Begum F, Khair A, Myenuddin M (2009) Effect of spirulina on biochemical parameters and reduction of tissue arsenic concentration in arsenic induced toxicities in ducks. Int J Poult Sci 8:69–74

    CAS  CrossRef  Google Scholar 

  • Ismail A, Roberts RD (1992) Arsenic in small mammals. Environ Technol 13:1091–1095

    CAS  CrossRef  Google Scholar 

  • IUPAC (1971) Nomenclature of inorganic chemistry. International Union of Pure and Applied Chemistry, London

    Google Scholar 

  • Janssens E, Dauwe T, Bervoets L, Eens M (2001) Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ Toxicol Chem 20:2815–2820

    CAS  CrossRef  Google Scholar 

  • Jones FT (2007) A broad view of arsenic. Poult Sci 86:2–14

    CAS  CrossRef  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemistry of trace elements (in Polish, Biogeochemia pierwiastków śladowych), 2nd edn. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Kaise T, Watanabe S, Itoh K (1985) The acute toxicity of arsenobetaine. Chemosphere 14:1327–1332

    CAS  CrossRef  Google Scholar 

  • Kalavathi S, Kumar AA, Reddy AG, Srilatha C, Reddy AR (2011) Sodium arsenite toxicity in broiler chicks and its amelioration: haemato-biochemical and pathological studies. Indian J Vet Pathol 35:171–176

    Google Scholar 

  • Kar S, Maity JP, Jean J-S, Liu C-C, Liu C-W, Bundschuh J, Lu H-Y (2011) Health risks for human intake of aquacultural fish: arsenic bioaccumulation and contamination. J Environ Sci Health Part A 46:1266–1273

    CAS  CrossRef  Google Scholar 

  • Karimi M-HS, Hassanpour M, Pourkhabbaz A-R, Błaszczyk M, Paluch J, Binkowski ŁJ (2016) Trace element concentrations in feathers of five Anseriformes in the south of the Caspian Sea. Iran Environ Monit Assess 188:1–7

    CAS  CrossRef  Google Scholar 

  • Khan A, Hussain HI, Sattar A, Khan MZ, Abbas RZ (2014) Toxico-pathological aspects of arsenic in birds and mammals: a review. Int J Agric Biol 16:1213–1224

    CAS  Google Scholar 

  • Kulp TR, Hoeft SE, Asao M, Madigan MT, Hollibaugh JT, Fisher JC et al (2008) Arsenic(iii) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science 321:967–970

    CAS  CrossRef  Google Scholar 

  • Lasky T, Sun W, Kadry A, Hoffman MK (2004) Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken. Environ Health Perspect 112:18–21

    CAS  CrossRef  Google Scholar 

  • Lin C-J, Wu M-H, Hsueh Y-M, Sun SS-M, Cheng A-L (2005) Tissue distribution of arsenic species in rabbits after single and multiple parenteral administration of arsenic trioxide: tissue accumulation and the reversibility after washout are tissue-selective. Cancer Chemother Pharmacol 55:170–178

    CAS  CrossRef  Google Scholar 

  • Liou S, Lung J, Chen Y, Yang T, Hsieh L, Chen C (1999) Increased chromosome-type chromosome aberration frequencies as biomarkers of cancer risk in a blackfoot endemic area increased chromosome-type chromosome aberration frequencies as biomarkers of cancer risk in a blackfoot endemic area. Cancer Res 59:1481–1484

    CAS  Google Scholar 

  • López Alonso M, Benedito JL, Miranda M, Castillo C, Hernández J, Shore RF (2002) Cattle as biomonitors of soil arsenic, copper, and zinc concentrations in Galicia (NW Spain). Arch Environ Contam Toxicol 43:103–108

    CrossRef  CAS  Google Scholar 

  • Lugo G, Cassady G, Palmisano P, Birmingham A (1969) Acute maternal arsenic. Am J Dis Child 117:328

    CAS  Google Scholar 

  • Lunde G (1977) Occurrence and transformation of arsenic in the marine environment. Environ Health Perspect 19:47–52

    CAS  CrossRef  Google Scholar 

  • Magellan K, Barral-Fraga L, Rovira M, Srean P, Urrea G, García-Berthou E, Guasch H (2014) Behavioural and physical effects of arsenic exposure in fish are aggravated by aquatic algae. Aquat Toxicol 156:116–124

    CAS  CrossRef  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    CAS  CrossRef  Google Scholar 

  • Marchiset-Ferlay N, Savanovitch C, Sauvant-Rochat MP (2012) What is the best biomarker to assess arsenic exposure via drinking water? Environ Int 39:150–171

    CAS  CrossRef  Google Scholar 

  • Mateo R, Taggart MA, Meharg AA (2003) Lead and arsenic in bones of birds of prey from Spain. Environ Pollut 126:107–114

    CAS  CrossRef  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    CAS  CrossRef  Google Scholar 

  • Moriarty MM, Koch I, Reimer KJ (2012) Arsenic speciation, distribution, and bioaccessibility in shrews and their food. Arch Environ Contam Toxicol 62:529–538

    CAS  CrossRef  Google Scholar 

  • Morita M, Edmonds JS (1992) Determination of arsenic species in biological and environmental samples (Technical Report). Pure Appl Chem 64:575–590

    CrossRef  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    CAS  CrossRef  Google Scholar 

  • Nachman KE, Graham JP, Price LB, Silbergeld EK (2005) Arsenic: a roadblock to potential animal waste management solutions. Environ Health Perspect 113:1123–1124

    CAS  CrossRef  Google Scholar 

  • Nachman KE, Baron PA, Raber G, Francesconi KA, Love DC (2013) Arsenic levels in chicken. Environ Health Perspect 121:A267

    CrossRef  CAS  Google Scholar 

  • NAS (1977) Biologic effects of arsenic on plants and animals. In: Arsenic: medical and biological effects of environmental pollutants. National Academy of Sciences, Washington, pp 117–172

    Google Scholar 

  • Newcombe C, Raab A, Williams PN, Deacon C, Haris PI, Meharg AA, Feldmann J (2010) Accumulation or production of arsenobetaine in humans? J Environ Monit 12:832–837

    CAS  CrossRef  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals. Elsevier, London

    Google Scholar 

  • Nordstrom DK (2002) Public health: worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    CAS  CrossRef  Google Scholar 

  • Norman NC (1998) Chemistry of arsenic, antimony and bismuth. Thomson Science, London

    Google Scholar 

  • NRCC (1978) Effects of arsenic in the Canadian environment. National Research Council Canada, Ottawa

    Google Scholar 

  • Ohnishi K, Yoshida H, Shigeno K, Nakamura S, Fujisawa S, Naito K, Shinjo K, Fujita Y, Matsui H, Takeshita A, Sugiyama S, Satoh H, Terada H, Ohno R (2000) Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia. Ann Intern Med 133:881–885

    CAS  CrossRef  Google Scholar 

  • Peles JD, Barrett GW (1997) Assessment of metal uptake and genetic damage in small mammals inhabiting a Fly Ash Basin. Bull Environ Contam Toxicol 59:279–284

    CAS  CrossRef  Google Scholar 

  • Pereda-Solis ME, Martinez-Guerrero JH, Toca-Ramirez JA (2012) Detection of zinc, lead, cadmium and arsenic in dabbling ducks from Durango, Mexico. Asian J Anim Vet Adv 7:761–766

    CAS  CrossRef  Google Scholar 

  • Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Vasken Aposhian H (2000) Monomethylarsonous acid (MMA(iii)) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207

    CAS  CrossRef  Google Scholar 

  • Rahman FA, Allan DL, Sadowsky MJ (2004) Arsenic availability from Chromated Copper Arsenate (CCA)–treated wood. J Environ Qual 33:173–180

    CAS  CrossRef  Google Scholar 

  • Rahman MA, Hasegawa H, Lim RP (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ Res 116:118–135

    CrossRef  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Willey-Blackwell, Chichester

    CrossRef  Google Scholar 

  • Riedel GF, Sanders JG, Osman RW (1989) The role of three species of benthic invertebrates in the transport of arsenic from contaminated estuarine sediment. J Exp Mar Bio Ecol 134:143–155

    CrossRef  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    CAS  CrossRef  Google Scholar 

  • Sakurai T (2003) Biomethylation of arsenic is essentially detoxicating event. J Health Sci 49:171–178

    CAS  CrossRef  Google Scholar 

  • Sánchez-Virosta P, Espín S, García-Fernández AJ, Eeva T (2015) A review on exposure and effects of arsenic in passerine birds. Sci Total Environ 512–513:506–525

    CrossRef  CAS  Google Scholar 

  • Saunders JR, Hough C, Knopper LD, Koch I, Reimer KJ (2011) Arsenic transformations in terrestrial small mammal food chains from contaminated sites in Canada. J Environ Monit 13:1784–1792

    CAS  CrossRef  Google Scholar 

  • Schaller J, Weiske A, Mkandawire M, Dudel EG (2010) Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79:169–173

    CAS  CrossRef  Google Scholar 

  • Schoepp-Cothenet B, Duval S, Santini JM, Nitschke W (2009) Comment on “Arsenic(iii) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California”. Science 323:583

    CAS  CrossRef  Google Scholar 

  • Schwartze EW (1922) The so-called habituation to “arsenic:” variation in the toxicity of arsenious oxide. J Pharmacol Exp Ther 20:181–203

    CAS  Google Scholar 

  • Sharaf R, Khan A, Khan MZ, Hussain I, Abbas RZ, Gul ST et al (2013) Arsenic induced toxicity in broiler chicks and its amelioration with ascorbic acid: clinical, hematological and pathological study. Pak Vet J 33:277–281

    CAS  Google Scholar 

  • Sharma RP, Shupe JL (1977) Lead, cadmium, and arsenic residues in animal tissues in relation to those in their surrounding habitat. Sci Total Environ 7:53–62

    CAS  CrossRef  Google Scholar 

  • Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL) II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354–3360

    CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  CrossRef  Google Scholar 

  • Smith GJ, Rongstad OJ (1982) Small mammal heavy metal concentrations from mined and control sites. Environ Pollut 28:121–134

    CAS  CrossRef  Google Scholar 

  • Solo-Gabriele H, Sakura-Lemessy DM, Townsend T, Du-bey B, Jambeck J (2003) Quantities of arsenic within the state of Florida. Report #03–06. Florida Center for Solid and Hazardous Waste Management, Gainesville

    Google Scholar 

  • Stevens JT, DiPasquale LC, Farmer JD (1979) The acute inhalation toxicology of the technical grade organoarsenical herbicides, cacodylic acid and disodium methanearsonic acid; a route comparison. Bull Environ Contam Toxicol 21:304–311

    CAS  CrossRef  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    CAS  CrossRef  Google Scholar 

  • Strincone M, Fino A, Cattani G, Catrambone M, Pirrone N (2013) Emissions, air concentrations and atmospheric depositions of arsenic, cadmium, lead and nickel in Italy in the last two decades: a review of recent trends in relation to policy strategies adopted locally, regionally and globally. E3S Web Conf 1:38003

    CrossRef  Google Scholar 

  • Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA et al (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74:289–299

    CAS  CrossRef  Google Scholar 

  • Tamaki S, Frankenberger WT Jr (1992) Environmental biochemistry of arsenic. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 79–110

    CrossRef  Google Scholar 

  • TOXNET (2015) Toxicology Data Network. NIH U.S. National Library of Medicine. http://toxnet.nlm.nih.gov/. Accessed 4 Oct 2015

  • Turpeinen R, Pantsar-Kallio M, Häggblom M, Kairesalo T (1999) Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci Total Environ 236:173–180

    CAS  CrossRef  Google Scholar 

  • USGS (1950) 1950 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (1955) 1955 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (1960) 1960 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (1965) 1965 Minerals yearbook minor metals. U.S. Geological Survey

    Google Scholar 

  • USGS (1970) 1970 Minerals yearbook minor metals. U.S. Geological Survey

    Google Scholar 

  • USGS (1975) 1975 Minerals yearbook minor metals. U.S. Geological Survey

    Google Scholar 

  • USGS (1980) 1980 Minerals yearbook minor metals. U.S. Geological Survey

    Google Scholar 

  • USGS (1985) 1985 Minerals yearbook other metals. U.S. Geological Survey

    Google Scholar 

  • USGS (1990) 1990 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (1995) 1995 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (2000) 2000 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (2006) 2005 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (2011) 2010 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (2015) 2013 Minerals yearbook arsenic. U.S. Geological Survey

    Google Scholar 

  • USGS (2016) Mineral commodity summary arsenic. U.S. Geological Survey

    Google Scholar 

  • Uthus AO (2003) Arsenic essentially: a role affecting methionine metabolism. J Trace Elem Exp Med:345–355

    Google Scholar 

  • Vahidnia A, van der Straaten RJHM, Romijn F, van Pelt J, van der Voet GB, de Wolff FA (2007a) Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity. Toxicol In Vitro 21:1104–1112

    CAS  CrossRef  Google Scholar 

  • Vahidnia A, van der Voet GB, de Wolff FA (2007b) Arsenic neurotoxicity – a review. Hum Exp Toxicol 26:823–832

    CAS  CrossRef  Google Scholar 

  • Vahter M (2000) Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett 112–113:209–217

    CrossRef  Google Scholar 

  • Vahter M, Marafante E (1983) Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chem Biol Interact 47:29–44

    CAS  CrossRef  Google Scholar 

  • Vallee BL, Ulmer DD, Wacker WEC (1960) Arsenic toxicology and biochemistry. Arch Ind Health 21:132–151

    CAS  Google Scholar 

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74:211–218

    CAS  CrossRef  Google Scholar 

  • Vodela JK, Renden JA, Lenz SD, McElhenney WH, Kemppainen BW (1997) Drinking water contaminants (arsenic, cadmium, lead, benzene, and trichloroethylene). 1. Interaction of contaminants with nutritional status on general performance and immune function in broiler chickens. Poult Sci 76:1474–1492

    CAS  CrossRef  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38:589–604

    CAS  CrossRef  Google Scholar 

  • WHO (2001) Environmental health criteria 224: arsenic and arsenic compunds. World Health Organization, Geneva

    Google Scholar 

  • WHO (2010) Exposure to arsenic: a major public health concern. World Health Organization, Geneva

    Google Scholar 

  • Winship KA (1984) Toxicity of inorganic arsenic salts. Adverse Drug React Acute Poisoning Rev 3:129–160

    CAS  Google Scholar 

  • Woolson EA (1975) Arsenical pesticides. ACS Symp Ser 7:126–136

    Google Scholar 

  • WVDL (2015) Normal range values for WVDL toxicology. https://www.yumpu.com/en/document/view/52919318/normal-range-values-for-wvdl-toxicology. Accessed 28 April 2015

  • Xu H, Allard B, Grimvall A (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 57–58:269–278

    CrossRef  Google Scholar 

  • Yamauchi H, Yamamura Y (1985) Metabolism and excretion of orally administrated arsenic trioxide in the hamster. Toxicology 34:113–121

    CAS  CrossRef  Google Scholar 

  • Zakharyan R, Wu Y, Bogdan GM, Aposhian HV (1995) Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Chem Res Toxicol 8:1029–1038

    CAS  CrossRef  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz J. Binkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Binkowski, Ł.J. (2019). Arsenic, As. In: Kalisińska, E. (eds) Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments. Springer, Cham. https://doi.org/10.1007/978-3-030-00121-6_13

Download citation