Skip to main content

Model Checking for Coalition Announcement Logic

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11117)


Coalition Announcement Logic (CAL) studies how a group of agents can enforce a certain outcome by making a joint announcement, regardless of any announcements made simultaneously by the opponents. The logic is useful to model imperfect information games with simultaneous moves. We propose a model checking algorithm for CAL and show that the model checking problem for CAL is PSPACE-complete. We also consider a special positive case for which the model checking problem is in P. We compare these results to those for other logics with quantification over information change.


  • Model checking
  • Coalition announcement logic
  • Dynamic epistemic logic

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00111-7_2
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00111-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. 1.

    For comparison, semantics for group announcement operator of the logic GAL mentioned in the introduction is iff and iff .


  1. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. J. Appl. Logic 8(1), 62–81 (2010).

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Ågotnes, T., van Ditmarsch, H.: Coalitions and announcements. In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) 7th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Estoril, Portugal, 12–16 May 2008, vol. 2, pp. 673–680. IFAAMAS (2008).

  3. Ågotnes, T., van Ditmarsch, H.: What will they say? - public announcement games. Synthese 179(Suppl.-1), 57–85 (2011).

  4. Ågotnes, T., van Ditmarsch, H., French, T.S.: The undecidability of quantified announcements. Studia Logica 104(4), 597–640 (2016).

  5. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21 (2017).

    CrossRef  MathSciNet  Google Scholar 

  6. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Rev. Symb. Logic 1(3), 305–334 (2008).

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common knowledge and private suspicions. In: Proceedings of the 7th Conference on Theoretical Aspects of Rationality and Knowledge (TARK 1998), Evanston, IL, USA, 22–24 July 1998, pp. 43–56 (1998)

    Google Scholar 

  8. van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  9. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–84. Elsevier, New York (2006)

    Google Scholar 

  10. van Ditmarsch, H., Fernández-Duque, D., van der Hoek, W.: On the definability of simulation and bisimulation in epistemic logic. J. Logic Comput. 24(6), 1209–1227 (2014).

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. van Ditmarsch, H., French, T., Hales, J.: Positive announcements. CoRR abs/1803.01696 (2018).

  12. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese Library, vol. 337. Springer, Dordrecht (2008).

    CrossRef  MATH  Google Scholar 

  13. van Ditmarsch, H., Kooi, B.: The secret of my success. Synthese 153(2), 339–339 (2006).

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Hintikka, J.: Knowledge and Belief. An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca (1962)

    Google Scholar 

  15. Parikh, R.: The logic of games and its applications. In: Karplnski, M., van Leeuwen, J. (eds.) Topics in the Theory of Computation, Annals of Discrete Mathematics, vol. 24, pp. 111–139. Elsevier Science, Amsterdam (1985).

  16. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1), 149–166 (2002).

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Plaza, J.: Logics of public communications (reprint of 1989’s paper). Synthese 158(2), 165–179 (2007).

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references


We thank anonymous IJCAI 2018 and KI 2018 referees for constructive comments, and IJCAI 2018 referees for finding an error in the earlier version of this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Rustam Galimullin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Galimullin, R., Alechina, N., van Ditmarsch, H. (2018). Model Checking for Coalition Announcement Logic. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)