Probabilistic Belief Revision via Similarity of Worlds Modulo Evidence

  • Gavin RensEmail author
  • Thomas Meyer
  • Gabriele Kern-Isberner
  • Abhaya Nayak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11117)


Similarity among worlds plays a pivotal role in providing the semantics for different kinds of belief change. Although similarity is, intuitively, a context-sensitive concept, the accounts of similarity presently proposed are, by and large, context blind. We propose an account of similarity that is context sensitive, and when belief change is concerned, we take it that the epistemic input provides the required context. We accordingly develop and examine two accounts of probabilistic belief change that are based on such evidence-sensitive similarity. The first switches between two extreme behaviors depending on whether or not the evidence in question is consistent with the current knowledge. The second gracefully changes its behavior depending on the degree to which the evidence is consistent with current knowledge. Finally, we analyze these two belief change operators with respect to a select set of plausible postulates.


Belief revision Probability Similarity Bayesian conditioning Lewis imaging 



Gavin Rens was supported by a Clause Leon Foundation postdoctoral fellowship while conducting this research. This research has been partially supported by the Australian Research Council (ARC), Discovery Project: DP150104133. This work is based on research supported in part by the National Research Foundation of South Africa (Grant number UID 98019). Thomas Meyer has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agr. No. 690974.


  1. 1.
    Lewis, D.: Probabilities of conditionals and conditional probabilities. Philos. Rev. 85(3), 297–315 (1976)CrossRefGoogle Scholar
  2. 2.
    Ramachandran, R., Nayak, A.C., Orgun, M.A.: Belief erasure using partial imaging. In: Li, J. (ed.) AI 2010. LNCS (LNAI), vol. 6464, pp. 52–61. Springer, Heidelberg (2010). Scholar
  3. 3.
    Chhogyal, K., Nayak, A., Schwitter, R., Sattar, A.: Probabilistic belief revision via imaging. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 694–707. Springer, Cham (2014). Scholar
  4. 4.
    Mishra, S., Nayak, A.: Causal basis for probabilistic belief change: distance vs. closeness. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds.) MIWAI 2016. LNCS (LNAI), vol. 10053, pp. 112–125. Springer, Cham (2016). Scholar
  5. 5.
    Rens, G., Meyer, T., Casini, G.: On revision of partially specified convex probabilistic belief bases. In: Kaminka, G., Fox, M., Bouquet, P., Dignum, V., Dignum, F., Van Harmelen, F. (eds.) Proceedings of the Twenty-Second European Conference on Artificial Intelligence (ECAI-2016), The Hague, The Netherlands, pp. 921–929. IOS Press, September 2016Google Scholar
  6. 6.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  7. 7.
    Ashby, F.G., Ennis, D.M.: Similarity measures. Scholarpedia 2(12), 4116 (2007)CrossRefGoogle Scholar
  8. 8.
    Choi, S.S., Cha, S.H., Tappert, C.: A survey of binary similarity and distance measures. Syst. Cybern. Inform. 8(1), 43–48 (2010)Google Scholar
  9. 9.
    Shepard, R.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jäkel, F., Schölkopf, B., Wichmann, F.: Similarity, kernels, and the triangle inequality. J. Math. Psychol. 52(5), 297–303 (2008). Scholar
  11. 11.
    Yearsley, J.M., Barque-Duran, A., Scerrati, E., Hampton, J.A., Pothos, E.M.: The triangle inequality constraint in similarity judgments. Prog. Biophys. Mol. Biol. 130(Part A), 26–32 (2017). Quantum information models in biology: from molecular biology to cognition
  12. 12.
    Dubois, D., Moral, S., Prade, H.: Belief change rules in ordinal and numerical uncertainty theories. In: Dubois, D., Prade, H. (eds.) Belief Change, vol. 3, pp. 311–392. Springer, Dordrecht (1998). Scholar
  13. 13.
    Voorbraak, F.: Probabilistic belief change: expansion, conditioning and constraining. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, UAI 1999, San Francisco, CA, USA, pp. 655–662. Morgan Kaufmann Publishers Inc. (1999).
  14. 14.
    Lehmann, D., Magidor, M., Schlechta, K.: Distance semantics for belief revision. J. Symb. Log. 66(1), 295–317 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jaynes, E.: Where do we stand on maximum entropy? In: The Maximum Entropy Formalism, pp. 15–118. MIT Press (1978)Google Scholar
  16. 16.
    Paris, J., Vencovská, A.: In defense of the maximum entropy inference process. Int. J. Approx. Reason. 17(1), 77–103 (1997). Scholar
  17. 17.
    Kern-Isberner, G.: Revising and updating probabilistic beliefs. In: Williams, M.A., Rott, H. (eds.) Frontiers in Belief Revision, Applied Logic Series, vol. 22, pp. 393–408. Kluwer Academic Publishers/Springer, Dordrecht (2001). Scholar
  18. 18.
    Beierle, C., Finthammer, M., Potyka, N., Varghese, J., Kern-Isberner, G.: A framework for versatile knowledge and belief management. IFCoLog J. Log. Appl. 4(7), 2063–2095 (2017)Google Scholar
  19. 19.
    Chan, H., Darwiche, A.: On the revision of probabilistic beliefs using uncertain evidence. Artif. Intell. 163, 67–90 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Grove, A., Halpern, J.: Updating sets of probabilities. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI 1998, San Francisco, CA, USA, pp. 173–182. Morgan Kaufmann (1998).
  21. 21.
    Mork, J.C.: Uncertainty, credal sets and second order probability. Synthese 190(3), 353–378 (2013). Scholar
  22. 22.
    Boutilier, C.: On the revision of probabilistic belief states. Notre Dame J. Form. Log. 36(1), 158–183 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Makinson, D.: Conditional probability in the light of qualitative belief change. Philos. Log. 40(2), 121–153 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chhogyal, K., Nayak, A., Sattar, A.: Probabilistic belief contraction: considerations on epistemic entrenchment, probability mixtures and KL divergence. In: Pfahringer, B., Renz, J. (eds.) AI 2015. LNCS (LNAI), vol. 9457, pp. 109–122. Springer, Cham (2015). Scholar
  25. 25.
    Zhuang, Z., Delgrande, J., Nayak, A., Sattar, A.: A unifying framework for probabilistic belief revision. In: Bacchus, F. (ed.) Proceedings of the Twenty-fifth International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 1370–1376. AAAI Press, Menlo Park (2017).
  26. 26.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gavin Rens
    • 1
    Email author
  • Thomas Meyer
    • 1
  • Gabriele Kern-Isberner
    • 2
  • Abhaya Nayak
    • 3
  1. 1.Centre for Artificial Intelligence - CSIR MerakaUniversity of Cape TownCape TownSouth Africa
  2. 2.Technical University of DortmundDortmundGermany
  3. 3.Macquarie UniversitySydneyAustralia

Personalised recommendations