Skip to main content

Preference-Based Monte Carlo Tree Search

  • Conference paper
  • First Online:
KI 2018: Advances in Artificial Intelligence (KI 2018)

Abstract

Monte Carlo tree search (MCTS) is a popular choice for solving sequential anytime problems. However, it depends on a numeric feedback signal, which can be difficult to define. Real-time MCTS is a variant which may only rarely encounter states with an explicit, extrinsic reward. To deal with such cases, the experimenter has to supply an additional numeric feedback signal in the form of a heuristic, which intrinsically guides the agent. Recent work has shown evidence that in different areas the underlying structure is ordinal and not numerical. Hence erroneous and biased heuristics are inevitable, especially in such domains. In this paper, we propose a MCTS variant which only depends on qualitative feedback, and therefore opens up new applications for MCTS. We also find indications that translating absolute into ordinal feedback may be beneficial. Using a puzzle domain, we show that our preference-based MCTS variant, wich only receives qualitative feedback, is able to reach a performance level comparable to a regular MCTS baseline, which obtains quantitative feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that this is a fair comparison between PB-MCTS and H-MCTS: The first uses more #samples per iteration, the latter uses more iterations.

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. CoRR abs/1606.06565 (2016)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

    Article  Google Scholar 

  3. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  4. Busa-Fekete, R., Hüllermeier, E.: A survey of preference-based online learning with bandit algorithms. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS (LNAI), vol. 8776, pp. 18–39. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11662-4_3

    Chapter  MATH  Google Scholar 

  5. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep reinforcement learning from human preferences. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA (2017)

    Google Scholar 

  6. Finnsson, H.: Simulation-based general game playing. Ph.D. thesis, Reykjavík University (2012)

    Google Scholar 

  7. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14125-6

    Book  MATH  Google Scholar 

  8. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforcement learning: a formal framework and a policy iteration algorithm. Mach. Learn. 89(1–2), 123–156 (2012). https://doi.org/10.1007/s10994-012-5313-8. Special Issue of Selected Papers from ECML PKDD 2011

    Article  MathSciNet  MATH  Google Scholar 

  9. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_19

    Chapter  Google Scholar 

  10. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  11. Lee, C.S.: The computational intelligence of MoGo revealed in Taiwan’s computer go tournaments. IEEE Trans. Comput. Intell. AI Games 1, 73–89 (2009)

    Article  Google Scholar 

  12. Pepels, T., Winands, M.H., Lanctot, M.: Real-time Monte Carlo tree search in Ms Pac-Man. IEEE Trans. Comput. Intell. AI Games 6(3), 245–257 (2014)

    Article  Google Scholar 

  13. Perez-Liebana, D., Mostaghim, S., Lucas, S.M.: Multi-objective tree search approaches for general video game playing. In: IEEE Congress on Evolutionary Computation (CEC 2016), pp. 624–631. IEEE (2016)

    Google Scholar 

  14. Ponsen, M., Gerritsen, G., Chaslot, G.: Integrating opponent models with Monte-Carlo tree search in poker. In: Proceedings of Interactive Decision Theory and Game Theory Workshop at the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010), AAAI Workshops, vol. WS-10-03, pp. 37–42 (2010)

    Google Scholar 

  15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 2nd edn. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  16. Rimmel, A., Teytaud, O., Lee, C.S., Yen, S.J., Wang, M.H., Tsai, S.R.: Current frontiers in computer go. IEEE Trans. Comput. Intell. AI Games 2(4), 229–238 (2010)

    Article  Google Scholar 

  17. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    Article  Google Scholar 

  18. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Thurstone, L.L.: A law of comparative judgement. Psychol. Rev. 34, 278–286 (1927)

    Google Scholar 

  20. Weng, P.: Markov decision processes with ordinal rewards: reference point-based preferences. In: Proceedings of the 21st International Conference on Automated Planning and Scheduling (ICAPS 2011) (2011)

    Google Scholar 

  21. Wirth, C., Fürnkranz, J., Neumann, G.: Model-free preference-based reinforcement learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI 2016), pp. 2222–2228 (2016)

    Google Scholar 

  22. Yannakakis, G.N., Cowie, R., Busso, C.: The ordinal nature of emotions. In: Proceedings of the 7th International Conference on Affective Computing and Intelligent Interaction (ACII 2017) (2017)

    Google Scholar 

  23. Yue, Y., Broder, J., Kleinberg, R., Joachims, T.: The k-armed dueling bandits problem. J. Comput. Syst. Sci. 78(5), 1538–1556 (2012). https://doi.org/10.1016/j.jcss.2011.12.028

    Article  MathSciNet  MATH  Google Scholar 

  24. Yue, Y., Joachims, T.: Interactively optimizing information retrieval systems as a dueling bandits problem. In: Proceedings of the 26th Annual International Conference on Machine Learning (ICML 2009), pp. 1201–1208 (2009)

    Google Scholar 

  25. Zoghi, M., Whiteson, S., Munos, R., Rijke, M.: Relative upper confidence bound for the k-armed dueling bandit problem. In: Proceedings of the 31st International Conference on Machine Learning (ICML 2014), pp. 10–18 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG project number FU 580/10). We gratefully acknowledge the use of the Lichtenberg high performance computer of the TU Darmstadt for our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Joppen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joppen, T., Wirth, C., Fürnkranz, J. (2018). Preference-Based Monte Carlo Tree Search. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics