Skip to main content

Assembly Planning in Cluttered Environments Through Heterogeneous Reasoning

  • 1195 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11117)

Abstract

Assembly recipes can elegantly be represented in description logic theories. With such a recipe, the robot can figure out the next assembly step through logical inference. However, before performing an action, the robot needs to ensure various spatial constraints are met, such as that the parts to be put together are reachable, non occluded, etc. Such inferences are very complicated to support in logic theories, but specialized algorithms exist that efficiently compute qualitative spatial relations such as whether an object is reachable. In this work, we combine a logic-based planner for assembly tasks with geometric reasoning capabilities to enable robots to perform their tasks under spatial constraints. The geometric reasoner is integrated into the logic-based reasoning through decision procedures attached to symbols in the ontology.

M. Beetz—This work was partially funded by Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center 1320, EASE, and by the Spanish Government through the project DPI2016-80077-R. Aliakbar Akbari is supported by the Spanish Government through the grant FPI 2015.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00111-7_18
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-00111-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    http://knowrob.org.

  2. 2.

    https://sir.upc.edu/projects/kautham/.

References

  1. Akbari, A., Gillani, M., Rosell, J.: Reasoning-based evaluation of manipulation actions for efficient task planning. Robot 2015: Second Iberian Robotics Conference. AISC, vol. 417, pp. 69–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27146-0_6

    CrossRef  Google Scholar 

  2. Akbari, A., Gillani, M., Rosell, J.: Task and motion planning using physics-based reasoning. In: IEEE International Conference on Emerging Technologies and Factory Automation (2015)

    Google Scholar 

  3. Balakirsky, S.: Ontology based action planning and verification for agile manufacturing. Robot. Comput.-Integr. Manuf. 33(Suppl. C), 21–28 (2015). Special Issue on Knowledge Driven Robotics and Manufacturing

    CrossRef  Google Scholar 

  4. Balakirsky, S., Kootbally, Z., Kramer, T., Pietromartire, A., Schlenoff, C., Gupta, S.: Knowledge driven robotics for kitting applications. Robot. Auton. Syst. 61(11), 1205–1214 (2013)

    CrossRef  Google Scholar 

  5. Beßler, D., Pomarlan, M., Beetz, M.: OWL-enabled assembly planning for robotic agents. In: Proceedings of the 2018 International Conference on Autonomous Agents, AAMAS 2018 (2018)

    Google Scholar 

  6. Çalli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: The YCB object and model set and benchmarking protocols. CoRR abs/1502.03143 (2015)

    Google Scholar 

  7. Fiorini, S.R., et al.: Extensions to the core ontology for robotics and automation. Robot. Comput.-Integr. Manuf. 33(C), 3–11 (2015)

    CrossRef  Google Scholar 

  8. Kootbally, Z., Schlenoff, C., Lawler, C., Kramer, T., Gupta, S.: Towards robust assembly with knowledge representation for the planning domain definition language (PDDL). Robot. Comput.-Integr. Manuf. 33(C), 42–55 (2015)

    CrossRef  Google Scholar 

  9. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2000, vol. 2, pp. 995–1001. IEEE (2000)

    Google Scholar 

  10. Malec, J., Nilsson, K., Bruyninckx, H.: Describing assembly tasks in declarative way. In: IEEE/ICRA Workshop on Semantics (2013)

    Google Scholar 

  11. Gillani, M., Akbari, A., Rosell, J.: Ontological physics-based motion planning for manipulation. In: IEEE International Conference on Emerging Technologies and Factory Automation. IEEE (2015)

    Google Scholar 

  12. Patel, R., Hedelind, M., Lozan-Villegas, P.: Enabling robots in small-part assembly lines: the “rosetta approach” - an industrial perspective. In: ROBOTIK. VDE-Verlag (2012)

    Google Scholar 

  13. Perzylo, A., Somani, N., Profanter, S., Kessler, I., Rickert, M., Knoll, A.: Intuitive instruction of industrial robots: semantic process descriptions for small lot production. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2293–2300 (2016)

    Google Scholar 

  14. Polydoros, A.S., Großmann, B., Rovida, F., Nalpantidis, L., Krüger, V.: Accurate and versatile automation of industrial kitting operations with SkiROS. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 255–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_26

    CrossRef  Google Scholar 

  15. Rosell, J., Pérez, A., Aliakbar, A., Gillani, M., Palomo, L., García, N.: The Kautham project: a teaching and research tool for robot motion planning. In: IEEE International Conference on Emerging Technologies and Factory Automation (2014)

    Google Scholar 

  16. Schlenoff, C., et al.: An IEEE standard ontology for robotics and automation. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1337–1342. IEEE (2012)

    Google Scholar 

  17. Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. Int. J. Robot. Res. 23(7–8), 729–746 (2004)

    CrossRef  Google Scholar 

  18. Stenmark, M., Malec, J., Nilsson, K., Robertsson, A.: On distributed knowledge bases for robotized small-batch assembly. IEEE Trans. Autom. Sci. Eng. 12(2), 519–528 (2015)

    CrossRef  Google Scholar 

  19. Stilman, M., Kuffner, J.: Planning among movable obstacles with artificial constraints. Int. J. Robot. Res. 27(11–12), 1295–1307 (2008)

    CrossRef  Google Scholar 

  20. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning among movable obstacles. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3327–3332. IEEE (2007)

    Google Scholar 

  21. Sucan, I., Moll, M., Kavraki, L.E., et al.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012)

    CrossRef  Google Scholar 

  22. Tenorth, M., Beetz, M.: KnowRob - a knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32(5), 566–590 (2013)

    CrossRef  Google Scholar 

  23. Varadarajan, K.M., Vincze, M.: AfRob: the affordance network ontology for robots. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1343–1350. IEEE (2012)

    Google Scholar 

  24. Zaplana, I., Claret, J., Basañez, L.: Kinematic analysis of redundant robotic manipulators: application to Kuka LWR 4+ and ABB Yumi. Revista Iberoamericana de Automtica e Informtica Industrial (2017, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Beßler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Beßler, D. et al. (2018). Assembly Planning in Cluttered Environments Through Heterogeneous Reasoning. In: Trollmann, F., Turhan, AY. (eds) KI 2018: Advances in Artificial Intelligence. KI 2018. Lecture Notes in Computer Science(), vol 11117. Springer, Cham. https://doi.org/10.1007/978-3-030-00111-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00111-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00110-0

  • Online ISBN: 978-3-030-00111-7

  • eBook Packages: Computer ScienceComputer Science (R0)