Skip to main content

Modeling of Proton Exchange Membrane Fuel Cell System Considering Various Auxiliary Subsystems

  • Conference paper
  • First Online:
The Energy Mix for Sustaining Our Future (EAS 2018 2018)

Part of the book series: Springer Proceedings in Energy ((SPE))

Included in the following conference series:

Abstract

In the study, a comprehensive proton exchange membrane fuel cell (PEMFC) system model is developed, including a two-dimensional transient multiphase stack model, a transient membrane humidifier model, air compressor model, and cooling model. The coupled water and heat transport processes, sophisticated water phase changes, gas/liquid transport in porous layers, and flow channels are taken into consideration in the integrated system model. Effects of gas purge duration in PEMFC stack and membrane humidifier on startup performance are investigated under subzero and normal temperatures. It is found that purge duration of membrane humidifier has little effect on output voltage when started from −10 °C and −5 °C since saturated vapor pressure is relatively small. Besides, the cold start duration is mainly determined by initial membrane water content in PEMFC stack. The upstream current density is usually higher because reactant gases are more abundant. To avoid sharp voltage drop during startup from 30 °C with large current density, long purge duration is not suggested for both PEMFC stack and membrane humidifier. The humidifier temperature is stabilized at about 42 °C as a result of exhausted gases heating and heat loss to environment when stack temperature is kept at 60 °C. The membrane water content in humidifier increases more rapidly when current density rises since more water vapor is generated and flows into humidifier; meanwhile, it results in higher humidifier temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabbani, A., Rokni, M.: Dynamic characteristics of an automotive fuel cell system for transitory load changes. Sustain. Energy Technol. Assess. 1, 34–43 (2013)

    Google Scholar 

  2. Guo, Y.F., Chen, H.C., Wang, F.C.: The development of a hybrid PEMFC power system. Int. J. Hydrog. Energy 40(13), 4630–4640 (2015)

    Article  Google Scholar 

  3. Hosseinzadeh, E., Rokni, M., et al.: Thermal and water management of low temperature proton exchange membrane fuel cell in fork-lift truck power system. Appl. Energy 104, 434–444 (2013)

    Article  Google Scholar 

  4. Santamaria, A.D., Bachman, J., Park, J.W.: Cold-start of parallel and interdigitated flow-field polymer electrolyte membrane fuel cell. Electrochim. Acta 107, 327–338 (2013)

    Article  Google Scholar 

  5. Yang, Z., Du, Q., Huo, S., et al.: Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 42(40), 25372–25387 (2017)

    Article  Google Scholar 

  6. Xie, X., Zhang, G., Zhou, J., et al.: Experimental and theoretical analysis of ionomer/carbon ratio effect on PEM fuel cell cold start operation. Int. J. Hydrog. Energy 42(17), 12521–12530 (2017)

    Article  Google Scholar 

  7. Fan, L., Zhang, G., Jiao, K.: Characteristics of PEMFC operating at high current density with low external humidification. Energy Convers. Manag. 150, 763–774 (2017)

    Article  Google Scholar 

  8. Jiao, K., Li, X.: Water transport in polymer electrolyte membrane fuel cells. Prog. Energy Combust. Sci. 37(3), 221–291 (2011)

    Article  MathSciNet  Google Scholar 

  9. Tabe, Y., Yamada, K., Ichikawa, R., et al.: Ice formation processes in PEM fuel cell catalyst layers during cold startup analyzed by cryo-SEM. J. Electrochem. Soc. 163(10), F1139–F1145 (2016)

    Article  Google Scholar 

  10. Niya, S.M.R., Hoorfar, M.: Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique—a review. J. Power Sources 240, 281–293 (2013)

    Article  Google Scholar 

  11. Ishikawa, Y., Shiozawa, M., Kondo, M., et al.: Theoretical analysis of supercooled states of water generated below the freezing point in a PEFC. Int. J. Heat Mass Transf. 74, 215–227 (2014)

    Article  Google Scholar 

  12. Plazanet, M., Sacchetti, F., Petrillo, C., et al.: Water in a polymeric electrolyte membrane: sorption/desorption and freezing phenomena. J. Membr. Sci. 453, 419–424 (2014)

    Article  Google Scholar 

  13. Molaeimanesh, G.R., Akbari, M.H.: Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by Lattice Boltzmann method. Int. J. Hydrog. Energy 39(16), 8401–8409 (2014)

    Article  Google Scholar 

  14. Niu, Z., Jiao, K., Zhang, F., et al.: Direct numerical simulation of two-phase turbulent flow in fuel cell flow channel. Int. J. Hydrog. Energy 41(4), 3147–3152 (2016)

    Article  Google Scholar 

  15. Srinophakun, T., Martkumchan, S.: Ionic conductivity in a Chitosan membrane for a PEM fuel cell using molecular dynamics simulation. Carbohydr. Polym. 88(1), 194–200 (2012)

    Article  Google Scholar 

  16. Cheng, S.J., et al.: Investigating the effects of operational factors on PEMFC performance based on CFD simulations using a three-level full-factorial design. Renew. Energy 39(1), 250–260 (2012)

    Article  Google Scholar 

  17. Luo, Y., Guo, Q., Du, Q., et al.: Analysis of cold start processes in proton exchange membrane fuel cell stacks. J. Power Sources 224, 99–114 (2013)

    Article  Google Scholar 

  18. Yu, S., et al.: A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int. J. Heat Mass Transf. 54(7–8), 1344–1351 (2011)

    Article  Google Scholar 

  19. Bhatia, D., Sabharwal, M., Duelk, C.: Analytical model of a membrane humidifier for polymer electrolyte membrane fuel cell systems. Int. J. Heat Mass Transf. 58(1–2), 702–717 (2013)

    Article  Google Scholar 

  20. Park, S., Jung, D.: Effect of operating parameters on dynamic response of water-to-gas membrane humidifier for proton exchange membrane fuel cell vehicle. Int. J. Hydrog. Energy 38(17), 7114–7125 (2013)

    Article  Google Scholar 

  21. Tajiri, K., Tabuchi, Y., et al.: Effects of operating and design parameters on PEFC cold start. J. Power Sources 165(1), 279–286 (2007)

    Article  Google Scholar 

  22. Tang, H.Y., Santamaria, A.D., Bachman, J., et al.: Vacuum-assisted drying of polymer electrolyte membrane fuel cell. Appl. Energy 107, 264–270 (2013)

    Article  Google Scholar 

  23. Du, Q., Jia, B., Luo, Y., et al.: Maximum power cold start mode of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 39(16), 8390–8400 (2014)

    Article  Google Scholar 

  24. Ozen, D.N., et al.: Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew. Sustain. Energy Rev. 59, 1298–1306 (2016)

    Article  Google Scholar 

  25. Hwang, J.J.: Effect of hydrogen delivery schemes on fuel cell efficiency. J. Power Sources 239, 54–63 (2013)

    Article  Google Scholar 

  26. Kadylak, D., Mérida, W.: Experimental verification of a membrane humidifier model based on the effectiveness method. J. Power Sources 195(10), 3166–3175 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Key Research and Development Program of China (2018YFB0105505) and National Natural Science Foundation of China for Excellent Young Scholars (51622606).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Du or Kui Jiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Liu, Z., Fan, L., Du, Q., Jiao, K. (2019). Modeling of Proton Exchange Membrane Fuel Cell System Considering Various Auxiliary Subsystems. In: Vasel, A., Ting, DK. (eds) The Energy Mix for Sustaining Our Future. EAS 2018 2018. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-00105-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00105-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00104-9

  • Online ISBN: 978-3-030-00105-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics