Skip to main content

An Algebraic Model for Real Matrix Representations. Remarks Regarding Quaternions and Octonions

  • Chapter
  • First Online:
Models and Theories in Social Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 179))

  • 416 Accesses

Abstract

In this chapter, we present some applications of quaternions and octonions. We present the real matrix representations for complex octonions and some of their properties which can be used in computations where these elements are involved. Moreover, we give a set of invertible elements in split quaternion algebras and in split octonion algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamouti, S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  • Alfsmann, D., Göckler, H.G., Sangwine, S.J., Ell, T., A.: Hypercomplex algebras in digital signal processing: benefits and drawbacks. In: 15th European Signal Processing Conference (EUSIPCO, 2007), Poznan, Poland, pp. 1322–1326 (2007)

    Google Scholar 

  • Baez, J.C.: The octonions. B. Am. Math. Soc. 39(2), 145–205 (2002)

    Article  Google Scholar 

  • Chanyal, B. C.: Octonion massive electrodynamics. Gen. Relat. Gravit. 46, article ID: 1646 (2014)

    Google Scholar 

  • Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized split-octonion electrodynamics. Int. J. Theor. Phys. 50(6), 1919–1926 (2011)

    Article  MathSciNet  Google Scholar 

  • Chen, J., Tu, A.: Fabric image edge detection based on octonion and echo state networks. Appl. Mech. Mater. 263–266, 2483–2487 (2013)

    Article  Google Scholar 

  • Flaut, C., Shpakivskyi, V.: Real matrix representations for the complex quaternions. Adv. Appl. Clifford Algebras 23(3), 657–671 (2013)

    Article  MathSciNet  Google Scholar 

  • Hanson, A.J.: Visualizing Quaternions. Elsevier Morgan Kaufmann Publishers, Burlington (2006)

    Google Scholar 

  • Jia, Y.B.: Quaternion and Rotation, Com S 477/577 Notes, (2017)

    Google Scholar 

  • Jouget, P.: Sécurité et performance de dispositifs de distribution quantique de clés à variables continues. Ph.D Thesis, TELECOM ParisTech (2013)

    Google Scholar 

  • Klco, P., Smetana, M., Kollarik, M., Tatar, M.: Application of octonions in the cough sounds classification. Adv. Appl. Sci. Res. 8(2), 30–37 (2017)

    Google Scholar 

  • Kostrikin, A.I., Shafarevich, I.R. (eds.): Algebra VI. Springer, Berlin (1995)

    Google Scholar 

  • Li, X.M.: Hyper-Complex Numbers and its Applications in Digital Image Processing. Seminars and Distinguished Lectures (2011)

    Google Scholar 

  • Schafer, R.D.: An Introduction to Nonassociative Algebras. Academic, New York (1966)

    MATH  Google Scholar 

  • Snopek, K., M.: Quaternions and Octonions in Signal Processing - Fundamentals and Some New Results, Przeglad Telekomunikacyjny - Wiadomoś ci Telekomunikacyjne, SIGMA NOT, 134(6), 619–622 (2015)

    Article  Google Scholar 

  • Tian, Y.: Matrix representations of octonions and their applications. Adv. in Appl. Clifford Algebras 10(1), 61–90 (2000)

    Article  MathSciNet  Google Scholar 

  • Unger, T., Markin, N.: Quadratic forms and space-time block codes from generalized quaternion and biquaternion algebras. IEEE Trans. Inf. Theory 57(9), 6148–6156 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Flaut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flaut, C. (2019). An Algebraic Model for Real Matrix Representations. Remarks Regarding Quaternions and Octonions. In: Flaut, C., Hošková-Mayerová, Š., Flaut, D. (eds) Models and Theories in Social Systems. Studies in Systems, Decision and Control, vol 179. Springer, Cham. https://doi.org/10.1007/978-3-030-00084-4_24

Download citation

Publish with us

Policies and ethics