Skip to main content

A Language Adaptive Method for Question Answering on French and English

  • Conference paper
  • First Online:
Semantic Web Challenges (SemWebEval 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 927))

Included in the following conference series:

Abstract

The LAMA (Language Adaptive Method for question Answering) system focuses on answering natural language questions using an RDF knowledge base within a reasonable time. Originally designed to process queries written in French, the system has been redesigned to also function on the English language. Overall, we propose a set of lexico-syntactic patterns for entity and property extraction to create a semantic representation of natural language requests. This semantic representation is then used to generate SPARQL queries able to answer users’ requests. The paper also describes a method for decomposing complex queries into a series of simpler queries. The use of preprocessed data and parallelization methods helps improve individual answer times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Qald 2017 challenge eswc 2017 hobbit. https://project-hobbit.eu/challenges/qald2017/. Accessed 29 Mar 2018

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. National Institutes of Health et al. Daily med (2014)

    Google Scholar 

  4. Gupta, P.: A survey of text question answering techniques. Int. J. Comput. Appl. 53, 1–8 (2012)

    Google Scholar 

  5. Radoev, N., Tremblay, M., Gagnon, M., Zouaq, A.: AMAL: answering french natural language questions using DBpedia. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_9

    Chapter  Google Scholar 

  6. 14th eswc 2017 |. https://2017.eswc-conferences.org/. Accessed 29 Mar 2018

  7. Mazzeio, G.: Answering controlled natural language questions on RDF knowledge bases (2016). https://openproceedings.org/2016/conf/edbt/paper-259.pdf

  8. Radoev, N., Zouaq, A., Tremblay, M., Gagnon, M.: LAMA: a language adaptive method for question answering. In: Scalable Question Answering over Linked Data Challenge (SQA2018), Heraklion, Greece (2018)

    Google Scholar 

  9. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  10. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via phrasal semantic parsing. In: Zong, C., Nie, J.-Y. (eds.) Natural Language Processing and Chinese Computing, pp. 333–344. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45924-9_30

    Google Scholar 

  11. Diefenbach, D., Singh, K., Maret, P.: Wdaqua-core1: a question answering service for rdf knowledge bases. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, pp. 1087–1091, Geneva, Switzerland. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  12. Ruseti, S., Mirea, A., Rebedea, T., Trausan-Matu, S.: Qanswer - enhanced entity matching for question answering over linked data. In: CLEF (2015)

    Google Scholar 

  13. Beaumont, R., Grau, B., Ligozat, A.-L.: Semgraphqa@qald-5: Limsi participation at qald-5@clef. 09 2015

    Google Scholar 

  14. Sorokin, D., Gurevych, I.: End-to-end representation learning for question answering with weak supervision. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 70–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_7

    Chapter  Google Scholar 

  15. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems (I-Semantics) (2013)

    Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, arXiv:1301.3781 (2013)

Download references

    Acknowledgements

This research has been partially funded through Canada NSERC Discovery Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Radoev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radoev, N., Zouaq, A., Tremblay, M., Gagnon, M. (2018). A Language Adaptive Method for Question Answering on French and English. In: Buscaldi, D., Gangemi, A., Reforgiato Recupero, D. (eds) Semantic Web Challenges. SemWebEval 2018. Communications in Computer and Information Science, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-00072-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00072-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00071-4

  • Online ISBN: 978-3-030-00072-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics