Abstract
The LAMA (Language Adaptive Method for question Answering) system focuses on answering natural language questions using an RDF knowledge base within a reasonable time. Originally designed to process queries written in French, the system has been redesigned to also function on the English language. Overall, we propose a set of lexico-syntactic patterns for entity and property extraction to create a semantic representation of natural language requests. This semantic representation is then used to generate SPARQL queries able to answer users’ requests. The paper also describes a method for decomposing complex queries into a series of simpler queries. The use of preprocessed data and parallelization methods helps improve individual answer times.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Qald 2017 challenge eswc 2017 hobbit. https://project-hobbit.eu/challenges/qald2017/. Accessed 29 Mar 2018
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
National Institutes of Health et al. Daily med (2014)
Gupta, P.: A survey of text question answering techniques. Int. J. Comput. Appl. 53, 1–8 (2012)
Radoev, N., Tremblay, M., Gagnon, M., Zouaq, A.: AMAL: answering french natural language questions using DBpedia. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_9
14th eswc 2017 |. https://2017.eswc-conferences.org/. Accessed 29 Mar 2018
Mazzeio, G.: Answering controlled natural language questions on RDF knowledge bases (2016). https://openproceedings.org/2016/conf/edbt/paper-259.pdf
Radoev, N., Zouaq, A., Tremblay, M., Gagnon, M.: LAMA: a language adaptive method for question answering. In: Scalable Question Answering over Linked Data Challenge (SQA2018), Heraklion, Greece (2018)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)
Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via phrasal semantic parsing. In: Zong, C., Nie, J.-Y. (eds.) Natural Language Processing and Chinese Computing, pp. 333–344. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45924-9_30
Diefenbach, D., Singh, K., Maret, P.: Wdaqua-core1: a question answering service for rdf knowledge bases. In: Companion Proceedings of the The Web Conference 2018, WWW 2018, pp. 1087–1091, Geneva, Switzerland. International World Wide Web Conferences Steering Committee (2018)
Ruseti, S., Mirea, A., Rebedea, T., Trausan-Matu, S.: Qanswer - enhanced entity matching for question answering over linked data. In: CLEF (2015)
Beaumont, R., Grau, B., Ligozat, A.-L.: Semgraphqa@qald-5: Limsi participation at qald-5@clef. 09 2015
Sorokin, D., Gurevych, I.: End-to-end representation learning for question answering with weak supervision. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 70–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69146-6_7
Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in multilingual entity extraction. In: Proceedings of the 9th International Conference on Semantic Systems (I-Semantics) (2013)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR, arXiv:1301.3781 (2013)
Acknowledgements
This research has been partially funded through Canada NSERC Discovery Grant Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Radoev, N., Zouaq, A., Tremblay, M., Gagnon, M. (2018). A Language Adaptive Method for Question Answering on French and English. In: Buscaldi, D., Gangemi, A., Reforgiato Recupero, D. (eds) Semantic Web Challenges. SemWebEval 2018. Communications in Computer and Information Science, vol 927. Springer, Cham. https://doi.org/10.1007/978-3-030-00072-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-00072-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00071-4
Online ISBN: 978-3-030-00072-1
eBook Packages: Computer ScienceComputer Science (R0)