Advertisement

The FeatureSent System at ESWC-2018 Challenge on Semantic Sentiment Analysis

  • Mauro DragoniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 927)

Abstract

The approach described in this paper explores the use of semantic structured representation of sentences extracted from texts for multi-domain sentiment analysis purposes. The presented algorithm is built upon a domain-based supervised approach using index-like structured for representing information extracted from text. The algorithm extracts dependency parse relationships from the sentences containing in a training set. Then, such relationships are aggregated in a semantic structured together with either polarity and domain information. Such information is exploited in order to have a more fine-grained representation of the learned sentiment information. When the polarity of a new text has to be computed, such a text is converted in the same semantic representation that is used (i) for detecting the domain to which the text belongs to, and then (ii), once the domain is assigned to the text, the polarity is extracted from the index-like structure. First experiments performed by using the Blitzer dataset for training the system demonstrated the feasibility of the proposed approach.

References

  1. 1.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of EMNLP, Philadelphia, Association for Computational Linguistics, pp. 79–86 (July 2002)Google Scholar
  2. 2.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer, Berlin (2012)CrossRefGoogle Scholar
  3. 3.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)Google Scholar
  4. 4.
    Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)Google Scholar
  5. 5.
    Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)Google Scholar
  6. 6.
    Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for sentiment analysis. In: ACL, pp. 1386–1395 (2010)Google Scholar
  7. 7.
    Tan, S., Wang, Y., Cheng, X.: Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR, pp. 743–744 (2008)Google Scholar
  8. 8.
    Qiu, L., Zhang, W., Hu, C., Zhao, K.: Selc: a self-supervised model for sentiment classification. In: CIKM, pp. 929–936 (2009)Google Scholar
  9. 9.
    Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD, pp. 1275–1284 (2009)Google Scholar
  10. 10.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  11. 11.
    Somasundaran, S.: Discourse-level relations for Opinion Analysis. Ph.D. thesis, University of Pittsburgh (2010)Google Scholar
  12. 12.
    Wang, H., Zhou, G.: Topic-driven multi-document summarization. In: IALP, pp. 195–198 (2010)Google Scholar
  13. 13.
    Dragoni, M.: Shellfbk: an information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation. SemEval ’2015, Denver, Colorado, pp. 502–509. Association for Computational Linguistics (June 2015)Google Scholar
  14. 14.
    Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_20CrossRefGoogle Scholar
  15. 15.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Exploiting propositions for opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 121–125. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_9CrossRefGoogle Scholar
  16. 16.
    Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 141–152. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_11CrossRefGoogle Scholar
  17. 17.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Opinion mining with a clause-based approach. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 166–175. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_15CrossRefGoogle Scholar
  18. 18.
    Federici, M., Dragoni, M.: Aspect-based opinion mining using knowledge bases. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 133–147. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_13CrossRefGoogle Scholar
  19. 19.
    Dragoni, M., Tettamanzi, A.G., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cogn. Comput. 7(2), 186–197 (2015)CrossRefGoogle Scholar
  20. 20.
    Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12024-9_2CrossRefGoogle Scholar
  21. 21.
    Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2016 challenge on semantic sentiment analysis. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 126–140. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_10CrossRefGoogle Scholar
  22. 22.
    Dragoni, M., Petrucci, G.: A fuzzy-based strategy for multi-domain sentiment analysis. Int. J. Approx. Reason. 93, 59–73 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2017 challenge on semantic sentiment analysis. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 148–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_14CrossRefGoogle Scholar
  24. 24.
    da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation operator for multidimensional relevance assessment. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 72–81. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10291-2_8CrossRefGoogle Scholar
  25. 25.
    Federici, M., Dragoni, M.: Towards unsupervised approaches for aspects extraction. In: Dragoni, M., Recupero, D.R., Denecke, K., Deng, Y., Declerck, T. ( eds.) Joint Proceedings of the 2th Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web and the 1st International Workshop on Extraction and Processing of Rich Semantics from Medical Texts co-located with ESWC 2016, Heraklion, Greece, May 29, 2016. Volume 1613 of CEUR Workshop Proceedings (2016). www.CEUR-WS.org
  26. 26.
    Federici, M., Dragoni, M.: A branching strategy for unsupervised aspect-based sentiment analysis. In: Dragoni, M., Recupero, D.R. (eds.)Proceedings of the 3rd International Workshop at ESWC on Emotions, Modality, Sentiment Analysis and the Semantic Web co-located with 14th ESWC 2017, Portroz, Slovenia, May 28, 2017. Volume 1874 of CEUR Workshop Proceedings (2017). www.CEUR-WS.org
  27. 27.
    Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: EMNLP, pp. 440–448 (2006)Google Scholar
  28. 28.
    Wilson, T., Wiebe, J., Hwa, R.: Recognizing strong and weak opinion clauses. Comput. Intell. 22(2), 73–99 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_22CrossRefGoogle Scholar
  30. 30.
    Hatzivassiloglou, V., Wiebe, J.: Effects of adjective orientation and gradability on sentence subjectivity. In: COLING, pp. 299–305 (2000)Google Scholar
  31. 31.
    Kim, S.M., Hovy, E.H.: Crystal: analyzing predictive opinions on the web. In: EMNLP-CoNLL, pp. 1056–1064 (2007)Google Scholar
  32. 32.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Polarity classification for target phrases in tweets: a Word2Vec approach. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 217–223. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5_40CrossRefGoogle Scholar
  33. 33.
    Rexha, A., Kröll, M., Kern, R., Dragoni, M.: An embedding approach for microblog polarity classification. In: Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web co-located with 14th ESWC 2017, Portroz, Slovenia, May 28, 2017. Volume 1874 of CEUR Workshop Proceedings (2017). www.CEUR-WS.org
  34. 34.
    Recupero, D.R., Dragoni, M., Presutti, V.: ESWC 15 challenge on concept-level sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 211–222. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_18CrossRefGoogle Scholar
  35. 35.
    Dragoni, M., Reforgiato Recupero, D.: Challenge on fine-grained sentiment analysis within ESWC2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 79–94. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_6CrossRefGoogle Scholar
  36. 36.
    Dragoni, M., Solanki, M., Blomqvist, E. (eds.): SemWebEval 2017. CCIS, vol. 769. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6CrossRefGoogle Scholar
  37. 37.
    Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)Google Scholar
  38. 38.
    Jin, W., Ho, H.H., Srihari, R.K.: Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD, pp. 1195–1204 (2009)Google Scholar
  39. 39.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)Google Scholar
  40. 40.
    Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion mining. In: EMNLP, pp. 1533–1541 (2009)Google Scholar
  41. 41.
    Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., Swen, B., Su, Z.: Hidden sentiment association in chinese web opinion mining. In: WWW, pp. 959–968(2008)Google Scholar
  42. 42.
    Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 1: Leveraging a multi-domain sentiment model for inferring polarity in micro-blog text. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, June 5–6, 2018, pp. 102–108. Association for Computational Linguistics (2018)Google Scholar
  43. 43.
    Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 3: Understanding irony in social networks through a multi-domain sentiment model. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, June 5–6, 2018, pp. 512–519. Association for Computational Linguistics (2018)Google Scholar
  44. 44.
    Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: A novel similarity-based crossover for artificial neural network evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_35CrossRefGoogle Scholar
  45. 45.
    Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)CrossRefGoogle Scholar
  46. 46.
    Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Combining argumentation and aspect-based opinion mining: the smack system. AI Commun. 31(1), 75–95 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Dragoni, M.: A three-phase approach for exploiting opinion mining in computational advertising. IEEE Intell. Syst. 32(3), 21–27 (2017)CrossRefGoogle Scholar
  48. 48.
    Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment analysis. IEEE Trans. Affect. Comput. 8(4), 457–470 (2017)CrossRefGoogle Scholar
  49. 49.
    Dragoni, M.: Computational advertising in social networks: an opinion mining-based approach. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.) Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09–13, 2018, pp. 1798–1804. ACM (2018)Google Scholar
  50. 50.
    Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: COLING (Posters), pp. 36–44 (2010)Google Scholar
  51. 51.
    Bermingham, A., Smeaton, A.F.: Classifying sentiment in microblogs: is brevity an advantage? In: CIKM, pp. 1833–1836 (2010)Google Scholar
  52. 52.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University (2009)Google Scholar
  53. 53.
    Cambria, E., Hussain, A.: Sentic computing: a common-sense-based framework for concept-level sentiment analysis (2015)CrossRefGoogle Scholar
  54. 54.
    Cambria, E., Hussain, A.: Sentic album: Content-, concept-, and context-based online personal photo management system. Cogn. Comput. 4(4), 477–496 (2012)CrossRefGoogle Scholar
  55. 55.
    Wang, Q.F., Cambria, E., Liu, C.L., Hussain, A.: Common sense knowledge for handwritten chinese recognition. Cogn. Comput. 5(2), 234–242 (2013)CrossRefGoogle Scholar
  56. 56.
    Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: WWW, pp. 751–760 (2010)Google Scholar
  57. 57.
    Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for multiple-domain sentiment analysis–identifying domain dependent/independent word polarity. In: AAAI, pp. 1286–1291 (2011)Google Scholar
  58. 58.
    Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP, pp. 571–578 (2013)Google Scholar
  59. 59.
    Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)CrossRefGoogle Scholar
  60. 60.
    Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Smack: an argumentation framework for opinion mining. In: Kambhampati, S. (ed.) Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 4242–4243. IJCAI/AAAI Press (2016)Google Scholar
  61. 61.
    da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional relevance: prioritized aggregation in a personalized information retrieval setting. Inf. Process. Manag. 48(2), 340–357 (2012)CrossRefGoogle Scholar
  62. 62.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, Maryland, pp. 55–60. Association for Computational Linguistics (June 2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations