Advertisement

The KABSA System at ESWC-2018 Challenge on Semantic Sentiment Analysis

  • Marco Federici
  • Mauro DragoniEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 927)

Abstract

In the last decade, the focus of the Opinion Mining field moved to detection of the pairs “aspect-polarity” instead of limiting approaches in the computation of the general polarity of a text. In this work, we propose an aspect-based opinion mining system based on the use of semantic resources for the extraction of the aspects from a text and for the computation of their polarities. The proposed system participated at the third edition of the Semantic Sentiment Analysis (SSA) challenge took place during ESWC 2018 achieving the runner-up place in the Task #2 concerning the aspect-based sentiment analysis. Moreover, a further evaluation performed on the SemEval 2015 benchmarks demonstrated the feasibility of the proposed approach.

References

  1. 1.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? sentiment classification using machine learning techniques. In: Proceedings of EMNLP, Philadelphia, pp. 79–86. Association for Computational Linguistics (July 2002)Google Scholar
  2. 2.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)Google Scholar
  3. 3.
    Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggarwal, C.C., Zhai, C.X. (eds.) Mining Text Data, pp. 415–463. Springer (2012)Google Scholar
  4. 4.
    Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: ACL, pp. 271–278 (2004)Google Scholar
  5. 5.
    Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: WWW, pp. 519–528 (2003)Google Scholar
  6. 6.
    Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for sentiment analysis. In: ACL, pp. 1386–1395 (2010)Google Scholar
  7. 7.
    Tan, S., Wang, Y., Cheng, X.: Combining learn-based and lexicon-based techniques for sentiment detection without using labeled examples. In: SIGIR, pp. 743–744 (2008)Google Scholar
  8. 8.
    Qiu, L., Zhang, W., Hu, C., Zhao, K.: Selc: a self-supervised model for sentiment classification. In: CIKM, pp. 929–936 (2009)Google Scholar
  9. 9.
    Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combining lexical knowledge with text classification. In: KDD, pp. 1275–1284 (2009)Google Scholar
  10. 10.
    Taboada, M., Brooke, J., Tofiloski, M., Voll, K.D., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011)CrossRefGoogle Scholar
  11. 11.
    Somasundaran, S.: Discourse-level relations for Opinion Analysis. Ph.D. thesis, University of Pittsburgh (2010)Google Scholar
  12. 12.
    Wang, H., Zhou, G.: Topic-driven multi-document summarization. In: IALP, pp. 195–198 (2010)Google Scholar
  13. 13.
    Dragoni, M.: Shellfbk: An information retrieval-based system for multi-domain sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation. SemEval ’2015, Denver, Colorado, pp. 502–509. Association for Computational Linguistics (June 2015)Google Scholar
  14. 14.
    Petrucci, G., Dragoni, M.: An information retrieval-based system for multi-domain sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 234–243. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_20CrossRefGoogle Scholar
  15. 15.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Exploiting propositions for opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 121–125. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_9CrossRefGoogle Scholar
  16. 16.
    Federici, M., Dragoni, M.: A knowledge-based approach for aspect-based opinion mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 141–152. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_11CrossRefGoogle Scholar
  17. 17.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Opinion mining with a clause-based approach. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 166–175. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_15CrossRefGoogle Scholar
  18. 18.
    Federici, M., Dragoni, M.: Aspect-based opinion mining using knowledge bases. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 133–147. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_13CrossRefGoogle Scholar
  19. 19.
    Dragoni, M., Tettamanzi, A.G., da Costa Pereira, C.: Propagating and aggregating fuzzy polarities for concept-level sentiment analysis. Cognit. Comput. 7(2), 186–197 (2015)CrossRefGoogle Scholar
  20. 20.
    Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., Stankovic, M., Cambria, E., Cantador, I., Di Iorio, A., Di Noia, T., Lange, C., Reforgiato Recupero, D., Tordai, A. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12024-9_2CrossRefGoogle Scholar
  21. 21.
    Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2016 challenge on semantic sentiment analysis. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 126–140. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_10CrossRefGoogle Scholar
  22. 22.
    Dragoni, M., Petrucci, G.: A fuzzy-based strategy for multi-domain sentiment analysis. Int. J. Approx. Reason. 93, 59–73 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Petrucci, G., Dragoni, M.: The IRMUDOSA system at ESWC-2017 challenge on semantic sentiment analysis. In: Dragoni, M., Solanki, M., Blomqvist, E. (eds.) SemWebEval 2017. CCIS, vol. 769, pp. 148–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6_14CrossRefGoogle Scholar
  24. 24.
    da Costa Pereira, C., Dragoni, M., Pasi, G.: A prioritized “and” aggregation operator for multidimensional relevance assessment. In Serra, R., Cucchiara, R. (eds.) AI*IA 2009: Emergent Perspectives in Artificial Intelligence, XIth International Conference of the Italian Association for Artificial Intelligence, Reggio Emilia, Italy, December 9–12, 2009, Proceedings. Volume 5883 of Lecture Notes in Computer Science, pp. 72–81. Springer (2009)Google Scholar
  25. 25.
    Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.): ESWC 2016. LNCS, vol. 9989. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5Google Scholar
  26. 26.
    Federici, M., Dragoni, M.: A branching strategy for unsupervised aspect-based sentimentanalysis. In Dragoni, M., Recupero, D.R. (eds.) Proceedings of the 3rd International Workshop at ESWC on Emotions, Modality, Sentiment Analysis and the SemanticWeb co-located with 14th ESWC 2017, Portroz, Slovenia, May 28, 2017, CEUR Workshop Proceedings, vol. 1874 (2017). http://ceur-ws.org/
  27. 27.
    Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: EMNLP, pp. 440–448 (2006)Google Scholar
  28. 28.
    Wilson, T., Wiebe, J., Hwa, R.: Recognizing strong and weak opinion clauses. Comput. Intell. 22(2), 73–99 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_22CrossRefGoogle Scholar
  30. 30.
    Hatzivassiloglou, V., Wiebe, J.: Effects of adjective orientation and gradability on sentence subjectivity. In: COLING, pp. 299–305 (2000)Google Scholar
  31. 31.
    Kim, S.M., Hovy, E.H.: Crystal: analyzing predictive opinions on the web. In: EMNLP-CoNLL, pp. 1056–1064 (2007)Google Scholar
  32. 32.
    Rexha, A., Kröll, M., Dragoni, M., Kern, R.: Polarity classification for target phrases in tweets: a Word2Vec approach. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 217–223. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47602-5_40CrossRefGoogle Scholar
  33. 33.
    Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.): ESWC 2017. LNCS, vol. 10250. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58451-5CrossRefGoogle Scholar
  34. 34.
    Recupero, D.R., Dragoni, M., Presutti, V.: ESWC 15 challenge on concept-level sentiment analysis. In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 211–222. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25518-7_18CrossRefGoogle Scholar
  35. 35.
    Dragoni, M., Reforgiato Recupero, D.: Challenge on fine-Ggrained sentiment analysis within ESWC2016. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds.) SemWebEval 2016. CCIS, vol. 641, pp. 79–94. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46565-4_6CrossRefGoogle Scholar
  36. 36.
    Dragoni, M., Solanki, M., Blomqvist, E. (eds.): SemWebEval 2017. CCIS, vol. 769. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69146-6CrossRefGoogle Scholar
  37. 37.
    Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)Google Scholar
  38. 38.
    Jin, W., Ho, H.H., Srihari, R.K.: Opinionminer: a novel machine learning system for web opinion mining and extraction. In: KDD, pp. 1195–1204 (2009)Google Scholar
  39. 39.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW, pp. 342–351 (2005)Google Scholar
  40. 40.
    Wu, Y., Zhang, Q., Huang, X., Wu, L.: Phrase dependency parsing for opinion mining. In: EMNLP, pp. 1533–1541 (2009)Google Scholar
  41. 41.
    Su, Q., et al.: Hidden sentiment association in chinese web opinion mining. In: WWW, pp. 959–968 (2008)Google Scholar
  42. 42.
    Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 1: leveraging a multi-domain sentiment model for inferring polarity in micro-blog text. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, 5–6 June 2018, pp. 102–108. Association for Computational Linguistics (2018)Google Scholar
  43. 43.
    Dragoni, M.: NEUROSENT-PDI at semeval-2018 task 3: Understanding irony in social networks through a multi-domain sentiment model. In: Apidianaki, M., Mohammad, S.M., May, J., Shutova, E., Bethard, S., Carpuat, M. (eds.) Proceedings of The 12th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT, New Orleans, Louisiana, 5–6 June 2018, pp. 512–519. Association for Computational Linguistics (2018)Google Scholar
  44. 44.
    Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: A novel similarity-based crossover for artificial neural network evolution. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 344–353. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15844-5_35CrossRefGoogle Scholar
  45. 45.
    Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction through double propagation. Comput. Linguist. 37(1), 9–27 (2011)CrossRefGoogle Scholar
  46. 46.
    Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Combining argumentation and aspect-based opinion mining: the smack system. AI Commun. 31(1), 75–95 (2018)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Dragoni, M.: A three-phase approach for exploiting opinion mining in computational advertising. IEEE Intell. Syst. 32(3), 21–27 (2017)CrossRefGoogle Scholar
  48. 48.
    Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment analysis. IEEE Trans. Affect. Comput. 8(4), 457–470 (2017)CrossRefGoogle Scholar
  49. 49.
    Dragoni, M.: Computational advertising in social networks: an opinion mining-based approach. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.) Proceedings of the 33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, 09–13 April 2018, pp. 1798–1804. ACM (2018)Google Scholar
  50. 50.
    Barbosa, L., Feng, J.: Robust sentiment detection on twitter from biased and noisy data. In: COLING (Posters), pp. 36–44. (2010)Google Scholar
  51. 51.
    Bermingham, A., Smeaton, A.F.: Classifying sentiment in microblogs: is brevity an advantage? In: CIKM, pp. 1833–1836 (2010)Google Scholar
  52. 52.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Standford University (2009)Google Scholar
  53. 53.
    Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework For Concept-Level Sentiment Analysis (2015)CrossRefGoogle Scholar
  54. 54.
    Cambria, E., Hussain, A.: Sentic album: content-, concept-, and context-based online personal photo management system. Cognit. Comput. 4(4), 477–496 (2012)CrossRefGoogle Scholar
  55. 55.
    Wang, Q.F., Cambria, E., Liu, C.L., Hussain, A.: Common sense knowledge for handwritten chinese recognition. Cognit. Comput. 5(2), 234–242 (2013)CrossRefGoogle Scholar
  56. 56.
    Blitzer, J., Dredze, M., Pereira, F.: Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: ACL, pp. 187–205 (2007)Google Scholar
  57. 57.
    Pan, S.J., Ni, X., Sun, J.T., Yang, Q., Chen, Z.: Cross-domain sentiment classification via spectral feature alignment. In: WWW, pp. 751–760 (2010)Google Scholar
  58. 58.
    Yoshida, Y., Hirao, T., Iwata, T., Nagata, M., Matsumoto, Y.: Transfer learning for multiple-domain sentiment analysis–identifying domain dependent/independent word polarity. AAA I, 1286–1291 (2011)Google Scholar
  59. 59.
    Ponomareva, N., Thelwall, M.: Semi-supervised vs. cross-domain graphs for sentiment analysis. In: RANLP, pp. 571–578 (2013)Google Scholar
  60. 60.
    Huang, S., Niu, Z., Shi, C.: Automatic construction of domain-specific sentiment lexicon based on constrained label propagation. Knowl.-Based Syst. 56, 191–200 (2014)CrossRefGoogle Scholar
  61. 61.
    Dragoni, M., da Costa Pereira, C., Tettamanzi, A.G.B., Villata, S.: Smack: An argumentation framework for opinion mining. In: Kambhampati, S., ed.: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, IJCAI/AAAI Press, pp. 4242–4243 (2016)Google Scholar
  62. 62.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  63. 63.
    Kipfer, B.A.: Roget’s 21st century thesaurus, 3rd edn (2005)Google Scholar
  64. 64.
    Cambria, E., Speer, R., Havasi, C., Hussain, A.: Senticnet: a publicly available semantic resource for opinion mining. In: AAAI Fall Symposium: Commonsense Knowledge (2010)Google Scholar
  65. 65.
    P.J., S., Dunphy, D., Marshall, S.: The General Inquirer: A Computer Approach to Content Analysis. MIT Press, Oxford (1966)Google Scholar
  66. 66.
    Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Chair, N.C.C., et al. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Paris, France, European Language Resources Association (ELRA) (May, 2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universitá di TrentoTrentoItaly
  2. 2.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations