Skip to main content

Scanning Transmission Electron Microscopy

Part of the Springer Handbooks book series (SHB)

Abstract

The scanning transmission electron microscope ( ) has become one of the preeminent instruments for high spatial resolution imaging and spectroscopy of materials, most notably at atomic resolution. The principle of STEM is quite straightforward. A beam of electrons is focused by electron optics to form a small illuminating probe that is raster-scanned across a sample. The sample is thinned such that the vast majority of electrons are transmitted, and the scattered electrons detected using some geometry of detector. The intensity as a function of probe position forms an image. It is the wide variety of possible detectors, and therefore imaging and spectroscopy modes, that gives STEM its strength. The purpose of this chapter is to describe what the STEM is, to highlight some of the types of experiment that can be performed using a STEM, to explain the principles behind the common modes of operation, to illustrate the features of typical STEM instrumentation, and to discuss some of the limiting factors in its performance.

  • scanning transmission electron microscope (STEM)
  • STEM imaging
  • STEM spectroscopy
  • STEM optics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-00069-1_2
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-00069-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   399.00
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7a,b
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13a,b
Fig. 2.14
Fig. 2.15a-c
Fig. 2.16a-c
Fig. 2.17a-c
Fig. 2.18
Fig. 2.19a-h
Fig. 2.20a-e
Fig. 2.21a-c
Fig. 2.22
Fig. 2.23
Fig. 2.24
Fig. 2.25a-e
Fig. 2.26
Fig. 2.27
Fig. 2.28
Fig. 2.29
Fig. 2.30
Fig. 2.31
Fig. 2.32a,b

References

  • A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter: Electron gun using a field emission source, Rev. Sci. Instrum. 39, 576–583 (1968)

    Google Scholar 

  • A.V. Crewe, J. Wall, L.M. Welter: A high-resolution scanning transmission electron microscope, J. Appl. Phys. 39, 5861–5868 (1968)

    Google Scholar 

  • A.V. Crewe: The physics of the high-resolution scanning microscope, Rep. Prog. Phys. 43, 621–639 (1980)

    CAS  Google Scholar 

  • L.M. Brown: Scanning transmission electron microscopy: Microanalysis for the microelectronic age, J. Phys. F 11, 1–26 (1981)

    Google Scholar 

  • J.M. Cowley: Scanning transmission electron microscopy of thin specimens, Ultramicroscopy 2, 3–16 (1976)

    CAS  Google Scholar 

  • S.J. Pennycook, P.D. Nellist: Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York 2011)

    Google Scholar 

  • O. Scherzer: Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–603 (1936)

    Google Scholar 

  • M. Born, E. Wolf: Principles of Optics (Cambridge Univ. Press, Cambridge 2000)

    Google Scholar 

  • C. Mory, C. Colliex, J.M. Cowley: Optimum defocus for STEM imaging and microanalysis, Ultramicroscopy 21, 171–178 (1987)

    Google Scholar 

  • O. Scherzer: Sphärische und chromatische Korrektur von Elektronen-Linsen, Optik 2, 114–132 (1947)

    CAS  Google Scholar 

  • J. Zach, M. Haider: Correction of spherical and chromatic aberration in a low-voltage SEM, Optik 98, 112–118 (1995)

    Google Scholar 

  • M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban: Electron microscopy image enhanced, Nature 392, 768–769 (1998)

    CAS  Google Scholar 

  • P.E. Batson, N. Dellby, O.L. Krivanek: Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617–620 (2002)

    CAS  Google Scholar 

  • P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, A. Borisevich, W.H.J. Sides, S.J. Pennycook: Direct sub-angstrom imaging of a crystal lattice, Science 305, 1741 (2004)

    CAS  Google Scholar 

  • O.L. Krivanek, N. Dellby, A.R. Lupini: Towards sub-Å electron beams, Ultramicroscopy 78, 1–11 (1999)

    CAS  Google Scholar 

  • O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi: Towards sub-0.5 Å electron beams, Ultramicroscopy 96, 229–237 (2003)

    CAS  Google Scholar 

  • J. Verbeeck, H. Tian, P. Schattschneider: Production and application of electron vortex beams, Nature 467, 301–304 (2010)

    CAS  Google Scholar 

  • J. Rusz, J.-C. Idrobo, S. Bhowmick: Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe, Phys. Rev. Lett. 113, 145501 (2014)

    Google Scholar 

  • J.M. Cowley (Ed.): Electron Diffraction Techniques (Volume 1), IUCr Monographs on Crystallography, Vol. 3 (Oxford Univ. Press, Oxford 1992)

    Google Scholar 

  • J.M. Cowley: Diffraction Physics, 2nd edn. (North-Holland, Amsterdam 1990)

    Google Scholar 

  • P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, 2nd edn. (Krieger, Malabar 1977)

    Google Scholar 

  • J.C.H. Spence, J.M. Zuo: Electron Microdiffraction, 1st edn. (Plenum, New York 1992)

    Google Scholar 

  • J.M. Cowley: Electron microdiffraction, Adv. Electron. Electron Phys. 46, 1–53 (1978)

    CAS  Google Scholar 

  • J.M. Cowley: Coherent interference in convergent-beam electron diffraction & shadow imaging, Ultramicroscopy 4, 435–450 (1979)

    CAS  Google Scholar 

  • J.M. Cowley: Coherent interference effects in SIEM and CBED, Ultramicroscopy 7, 19–26 (1981)

    CAS  Google Scholar 

  • J.M. Cowley, M.M. Disko: Fresnel diffraction in a coherent convergent electron beam, Ultramicroscopy 5, 469–477 (1980)

    CAS  Google Scholar 

  • J.C.H. Spence: Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging, Optik 92, 57–68 (1992)

    Google Scholar 

  • V. Ronchi: Forty years of history of a grating interferometer, Appl. Opt. 3, 437 (1964)

    Google Scholar 

  • N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini: Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177–185 (2001)

    CAS  Google Scholar 

  • W. Hoppe: Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeugungsinterferenzen, Acta Crystallogr. A 25, 495–501 (1969)

    Google Scholar 

  • W. Hoppe: Beugung im inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei unperiodischen Objekten, Acta Crystallogr. A 25, 508–514 (1969)

    Google Scholar 

  • W. Hoppe: Trace structure analysis, ptychography, phase tomography, Ultramicroscopy 10, 187–198 (1982)

    Google Scholar 

  • P.D. Nellist, B.C. McCallum, J.M. Rodenburg: Resolution beyond the ‘information limit’ in transmission electron microscopy, Nature 374, 630–632 (1995)

    CAS  Google Scholar 

  • A.R. Lupini: Aberration Correction in STEM, PhD Thesis (Cavendish Laboratory, Cambridge 2001)

    Google Scholar 

  • J.M. Cowley: Electron-diffraction phenomena observed with a high-resolution STEM instrument, J. Electron Microsc. Tech. 3, 25–44 (1986)

    CAS  Google Scholar 

  • A.R. Lupini: The electron Ronchigram. In: Scanning Transmission Electron Microscopy: Imaging and Analysis, ed. by S.J. Pennycook, P.D. Nellist (Springer, New York 2010) pp. 117–161

    Google Scholar 

  • H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, K. Takayanagi: Measurement method of aberration from Ronchigram by autocorrelation function, Ultramicroscopy 108, 1467–1475 (2008)

    CAS  Google Scholar 

  • A.R. Lupini, P. Wang, P.D. Nellist, A.I. Kirkland, S.J. Pennycook: Aberration measurement using the Ronchigram contrast transfer function, Ultramicroscopy 110, 891–898 (2010)

    CAS  Google Scholar 

  • J.M. Cowley: Adjustment of a STEM instrument by use of shadow images, Ultramicroscopy 4, 413–418 (1979)

    Google Scholar 

  • J.A. Lin, J.M. Cowley: Reconstruction from in-line electron holograms by digital processing, Ultramicroscopy 19, 179–190 (1986)

    Google Scholar 

  • D. Gabor: A new microscope principle, Nature 161, 777–778 (1948)

    CAS  Google Scholar 

  • J.C.H. Spence, J.M. Cowley: Lattice imaging in STEM, Optik 50, 129–142 (1978)

    CAS  Google Scholar 

  • J.C.H. Spence: Experimental High-Resolution Electron Microscopy, 2nd edn. (Oxford Univ. Press, Oxford 1988)

    Google Scholar 

  • J.M. Cowley: Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15, 58–59 (1969)

    Google Scholar 

  • E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy, Optik 31(3), 258–280 (1970)

    Google Scholar 

  • E. Zeitler, M.G.R. Thomson: Scanning transmission electron microscopy. 2., Optik 31(4), 359–366 (1970)

    Google Scholar 

  • P.D. Nellist, J.M. Rodenburg: Beyond the conventional information limit: The relevant coherence function, Ultramicroscopy 54, 61–74 (1994)

    Google Scholar 

  • A.I. Kirkland, W.O. Saxton, K.L. Chau, K. Tsuno, M. Kawasaki: Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM, Ultramicroscopy 57, 355–374 (1995)

    CAS  Google Scholar 

  • P. Ercius, M. Weyland, D.A. Muller, L.M. Gignac: Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography, Appl. Phys. Lett. 88, 243116 (2006)

    Google Scholar 

  • P.D. Nellist, S.J. Pennycook: The principles and interpretation of annular dark-field Z-contrast imaging, Adv. Imaging Electron Phys. 113, 148–203 (2000)

    Google Scholar 

  • A.V. Crewe, J. Wall, J. Langmore: Visibility of single atoms, Science 168, 1338–1340 (1970)

    CAS  Google Scholar 

  • M.M.J. Treacy, A. Howie, C.J. Wilson: Z contrast imaging of platinum and palladium catalysts, Philos. Mag. A 38, 569–585 (1978)

    CAS  Google Scholar 

  • A. Howie: Image contrast and localised signal selection techniques, J. Microsc. 117, 11–23 (1979)

    Google Scholar 

  • A.M. Donald, A.J. Craven: A study of grain boundary segregation in Cu-Bi alloys using STEM, Philos. Mag. A 39, 1–11 (1979)

    CAS  Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox: Incoherent imaging of zone axis crystals with ADF STEM, Ultramicroscopy 40, 121–138 (1992)

    Google Scholar 

  • D.E. Jesson, S.J. Pennycook: Incoherent imaging of thin specimens using coherently scattered electrons, Proc. Royal Soc. A 441, 261–281 (1993)

    Google Scholar 

  • P.D. Nellist, S.J. Pennycook: Accurate structure determination from image reconstruction in ADF STEM, J. Microsc. 190, 159–170 (1998)

    CAS  Google Scholar 

  • P. Hartel, H. Rose, C. Dinges: Conditions and reasons for incoherent imaging in STEM, Ultramicroscopy 63, 93–114 (1996)

    CAS  Google Scholar 

  • Lord Rayleigh: On the theory of optical images with special reference to the microscope, Philos. Mag. 5(42), 167–195 (1896)

    Google Scholar 

  • G. Black, E.H. Linfoot: Spherical aberration and the information limit of optical images, Proc. Royal Soc. A 239, 522–540 (1957)

    CAS  Google Scholar 

  • M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid: Direct determination of grain boundary atomic structure in SrTiO3, Science 266, 102–104 (1994)

    CAS  Google Scholar 

  • A.J. McGibbon, S.J. Pennycook, J.E. Angelo: Direct observation of dislocation core structures in CdTe/GaAs(001), Science 269, 519–521 (1995)

    CAS  Google Scholar 

  • I. Lazić, E.G.T. Bosch: Chapter three – Analytical review of direct stem imaging techniques for thin samples, Adv. Imaging Electron Phys. 199, 75–184 (2017)

    Google Scholar 

  • P.D. Nellist, S.J. Pennycook: Incoherent imaging using dynamically scattered coherent electrons, Ultramicroscopy 78, 111–124 (1999)

    CAS  Google Scholar 

  • B. Rafferty, P.D. Nellist, S.J. Pennycook: On the origin of transverse incoherence in Z-contrast STEM, J. Electron Microsc. 50, 227–233 (2001)

    CAS  Google Scholar 

  • S.J. Pennycook, D.E. Jesson: High-resolution incoherent imaging of crystals, Phys. Rev. Lett. 64, 938–941 (1990)

    CAS  Google Scholar 

  • S.J. Pennycook: Z-contrast STEM for materials science, Ultramicroscopy 30, 58–69 (1989)

    Google Scholar 

  • S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw: Lattice-resolution contrast from a focused coherent electron probe. Part II, Ultramicroscopy 96, 65–81 (2003)

    CAS  Google Scholar 

  • K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya: New scheme of calculation of annular dark-field STEM image including both elastically diffracted and TDS waves, J. Electron Microsc. 50, 157–162 (2001)

    CAS  Google Scholar 

  • A. Amali, P. Rez: Theory of lattice resolution in high-angle annular dark-field images, Microsc. Microanal. 3, 28–46 (1997)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw: Lattice-resolution contrast from a focused coherent Electon probe. Part I, Ultramicroscopy 96, 47–63 (2003)

    CAS  Google Scholar 

  • C. Dinges, A. Berger, H. Rose: Simulation of TEM images considering phonon and electron excitations, Ultramicroscopy 60, 49–70 (1995)

    CAS  Google Scholar 

  • E.J. Kirkland, R.F. Loane, J. Silcox: Simulation of annular dark field STEM images using a modified multislice method, Ultramicroscopy 23, 77–96 (1987)

    Google Scholar 

  • R.F. Loane, P. Xu, J. Silcox: Thermal vibrations in convergent-beam electron diffraction, Acta Crystallogr. A 47, 267–278 (1991)

    Google Scholar 

  • S. Hillyard, R.F. Loane, J. Silcox: Annular dark-field imaging: Resolution and thickness effects, Ultramicroscopy 49, 14–25 (1993)

    CAS  Google Scholar 

  • S. Hillyard, J. Silcox: Thickness effects in ADF STEM zone axis images, Ultramicroscopy 52, 325–334 (1993)

    CAS  Google Scholar 

  • J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Standardless atom counting in scanning transmission electron microscopy, Nano Lett. 10, 4405–4408 (2010)

    CAS  Google Scholar 

  • J. Aarons, L. Jones, A. Varambhia, K.E. MacArthur, D. Ozkaya, M. Sarwar, C.-K. Skylaris, P.D. Nellist: Predicting the oxygen-binding properties of platinum nanoparticle ensembles by combining high-precision electron microscopy and density functional theory, Nano Lett. 17, 4003–4012 (2017)

    CAS  Google Scholar 

  • D.E. Jesson, S.J. Pennycook: Incoherent imaging of crystals using thermally scattered electrons, Proc. Royal Soc. A 449, 273–293 (1995)

    CAS  Google Scholar 

  • D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox: Simulation of thermal diffuse scattering including a detailed phonon dispersion curve, Ultramicroscopy 86, 371–380 (2001)

    CAS  Google Scholar 

  • D.D. Perovic, C.J. Rossouw, A. Howie: Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy, Ultramicroscopy 52, 353–359 (1993)

    CAS  Google Scholar 

  • J. Gonnissen, A. De Backer, A.J. den Dekker, G.T. Martinez, A. Rosenauer, J. Sijbers, S. Van Aert: Optimal experimental design for the detection of light atoms from high-resolution scanning transmission electron microscopy images, Appl. Phys. Lett. 105, 063116 (2014)

    Google Scholar 

  • E. Abe, S.J. Pennycook, A.P. Tsai: Direct observation of a local thermal vibration anomaly in a quasicrystal, Nature 421, 347–350 (2003)

    CAS  Google Scholar 

  • J. Fertig, H. Rose: Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy, Optik 59, 407–429 (1981)

    CAS  Google Scholar 

  • C.J. Rossouw, L.J. Allen, S.D. Findlay, M.P. Oxley: Channelling effects in atomic resolution STEM, Ultramicroscopy 96, 299–312 (2003)

    CAS  Google Scholar 

  • C. Dwyer, J. Etheridge: Scattering of Å-scale electron probes in silicon, Ultramicroscopy 96, 343–360 (2003)

    CAS  Google Scholar 

  • S.J. Pennycook: The impact of STEM aberration correction on materials science, Ultramicroscopy 180, 22–33 (2017)

    CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook: Direct imaging of the atomic configuration of ultradispersed catalysts, Science 274, 413–415 (1996)

    CAS  Google Scholar 

  • K. Sohlberg, S. Rashkeev, A.Y. Borisevich, S.J. Pennycook, S.T. Pantelides: Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system, ChemPhysChem 5, 1893–1897 (2004)

    CAS  Google Scholar 

  • T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri: Artificial bright spots in atomic-resolution high-angle annular dark-field STEM images, J. Electron Microsc. 50, 517–521 (2001)

    CAS  Google Scholar 

  • O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy, Nature 464, 571–574 (2010)

    CAS  Google Scholar 

  • S. Farokhipoor, C. Magén, S. Venkatesan, J. Íñiguez, C.J.M. Daumont, D. Rubi, E. Snoeck, M. Mostovoy, C. de Graaf, A. Müller, M. Döblinger, C. Scheu, B. Noheda: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide, Nature 515, 379–383 (2014)

    CAS  Google Scholar 

  • P.L. Galindo, S. Kret, A.M. Sanchez, J.-Y. Laval, A. Yáñez, J. Pizarro, E. Guerrero, T. Ben, S.I. Molina: The peak pairs algorithm for strain mapping from HRTEM images, Ultramicroscopy 107, 1186–1193 (2007)

    CAS  Google Scholar 

  • N. Nakanishi, T. Yamazaki, A. Rečnik, M. Čeh, M. Kawasaki, K. Watanabe, M. Shiojiri: Retrieval process of high-resolution HAADF-STEM images, J. Electron Microsc. 51, 383–390 (2002)

    CAS  Google Scholar 

  • A.B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S.I. Sanchez, S.A. Bradley, A. Li, I. Szlufarska, P.M. Voyles: Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts, Nat. Commun. 5, 4155 (2014)

    CAS  Google Scholar 

  • L. Jones, H. Yang, T.J. Pennycook, M.S.J. Marshall, S. Van Aert, N.D. Browning, M.R. Castell, P.D. Nellist: Smart Align—a new tool for robust non-rigid registration of scanning microscope data, Adv. Struct. Chem. Imaging 1, 8 (2015)

    Google Scholar 

  • L. Jones, S. Wenner, M. Nord, P.H. Ninive, O.M. Løvvik, R. Holmestad, P.D. Nellist: Optimising multi-frame ADF-STEM for high-precision atomic-resolution strain mapping, Ultramicroscopy 179, 57–62 (2017)

    CAS  Google Scholar 

  • M. Retsky: Observed single atom elastic cross sections in a scanning electron microscope, Optik 41, 127–142 (1974)

    CAS  Google Scholar 

  • H. E, K.E. MacArthur, T.J. Pennycook, E. Okunishi, A.J. D'Alfonso, N.R. Lugg, L.J. Allen, P.D. Nellist: Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images, Ultramicroscopy 133, 109–119 (2013)

    CAS  Google Scholar 

  • J.M. LeBeau, S. Stemmer: Experimental quantification of annular dark-field images in scanning transmission electron microscopy, Ultramicroscopy 108, 1653–1658 (2008)

    CAS  Google Scholar 

  • F.F. Krause, M. Schowalter, T. Grieb, K. Müller-Caspary, T. Mehrtens, A. Rosenauer: Effects of instrument imperfections on quantitative scanning transmission electron microscopy, Ultramicroscopy 161, 146–160 (2016)

    CAS  Google Scholar 

  • L. Jones, K.E. MacArthur, V.T. Fauske, A.T.J. van Helvoort, P.D. Nellist: Rapid estimation of catalyst nanoparticle morphology and atomic-coordination by high-resolution Z-contrast electron microscopy, Nano Lett. 14, 6336–6341 (2014)

    CAS  Google Scholar 

  • G.T. Martinez, A. De Backer, A. Rosenauer, J. Verbeeck, S. Van Aert: The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images, Micron 63, 57–63 (2014)

    CAS  Google Scholar 

  • J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer: Quantitative atomic resolution scanning transmission electron microscopy, Phys. Rev. Lett. 100, 206101 (2008)

    Google Scholar 

  • S. Van Aert, A. De Backer, G.T. Martinez, B. Goris, S. Bals, G. Van Tendeloo, A. Rosenauer: Procedure to count atoms with trustworthy single-atom sensitivity, Phys. Rev. B 87, 064107 (2013)

    Google Scholar 

  • A. De Backer, G.T. Martinez, K.E. MacArthur, L. Jones, A. Béché, P.D. Nellist, S. Van Aert: Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting, Ultramicroscopy 151, 56–61 (2015)

    Google Scholar 

  • A. De wael, A. De Backer, L. Jones, P.D. Nellist, S. Van Aert: Hybrid statistics-simulations based method for atom-counting from ADF STEM images, Ultramicroscopy 177, 69–77 (2017)

    Google Scholar 

  • A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen: Composition mapping in InGaN by scanning transmission electron microscopy, Ultramicroscopy 111, 1316–1327 (2011)

    CAS  Google Scholar 

  • G.T. Martinez, A. Rosenauer, A. De Backer, J. Verbeeck, S. Van Aert: Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy, Ultramicroscopy 137, 12–19 (2014)

    CAS  Google Scholar 

  • A.R. Lupini, S.J. Pennycook: Localisation in elastic and inelastic scattering, Ultramicroscopy 96, 313–322 (2003)

    CAS  Google Scholar 

  • P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann: Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si, Nature 416, 826–829 (2002)

    CAS  Google Scholar 

  • P.M. Voyles, D.A. Muller, E.J. Kirkland: Depth-dependent imaging of individual dopant atoms in silicon, Microsc. Microanal. 10, 291–300 (2004)

    CAS  Google Scholar 

  • R. Ishikawa, A.R. Lupini, S.D. Findlay, T. Taniguchi, S.J. Pennycook: Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy, Nano Lett. 14, 1903–1908 (2014)

    CAS  Google Scholar 

  • M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim: Free-standing graphene at atomic resolution, Nat. Nanotechnol. 3, 676–681 (2008)

    CAS  Google Scholar 

  • E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori, Y. Kondo: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy, Microsc. Microanal. 15, 164–165 (2009)

    Google Scholar 

  • S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara: Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Appl. Phys. Lett. 95, 191913 (2009)

    Google Scholar 

  • S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, Y. Ikuhara: Dynamics of annular bright field imaging in scanning transmission electron microscopy, Ultramicroscopy 110, 903–923 (2010)

    CAS  Google Scholar 

  • R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, E. Abe: Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy, Nat. Mater. 10, 278–281 (2011)

    CAS  Google Scholar 

  • C. Dinges, H. Kohl, H. Rose: High-resolution imaging of crystalline objects by hollow-cone illumination, Ultramicroscopy 55, 91–100 (1994)

    CAS  Google Scholar 

  • S. Lee, Y. Oshima, E. Hosono, H. Zhou, K. Takayanagi: Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire, Ultramicroscopy 125, 43–48 (2013)

    CAS  Google Scholar 

  • S. Zheng, C. Fisher, T. Kato, Y. Nagao, H. Ohta, Y. Ikuhara: Domain formation in anatase TiO2 thin films on LaAlO3 substrates, Appl. Phys. Lett. 101, 191602–191601 (2012)

    Google Scholar 

  • T.J. Pennycook, A.R. Lupini, H. Yang, M.F. Murfitt, L. Jones, P.D. Nellist: Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution, Ultramicroscopy 151, 160–167 (2015)

    CAS  Google Scholar 

  • N.H. Dekkers, H. de Lang: Differential phase contrast in a STEM, Optik 41, 452–456 (1974)

    Google Scholar 

  • B.C. McCallum, M.N. Landauer, J.M. Rodenburg: Complex image reconstruction of weak specimens from a three-sector detector in the STEM, Optik 101, 53–62 (1995)

    Google Scholar 

  • J.N. Chapman, R. Ploessl, D.M. Donnet: Differential phase contrast microscopy of magnetic materials, Ultramicroscopy 47, 331–338 (1992)

    Google Scholar 

  • N. Shibata, S.D. Findlay, Y. Kohno, H. Sawada, Y. Kondo, Y. Ikuhara: Differential phase-contrast microscopy at atomic resolution, Nat. Phys. 8, 611–615 (2012)

    CAS  Google Scholar 

  • R. Close, Z. Chen, N. Shibata, S.D. Findlay: Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons, Ultramicroscopy 159(1), 124–137 (2015)

    CAS  Google Scholar 

  • I. Lazić, E.G.T. Bosch, S. Lazar: Phase contrast STEM for thin samples: Integrated differential phase contrast, Ultramicroscopy 160, 265–280 (2016)

    Google Scholar 

  • N. Shibata, S.D. Findlay, H. Sasaki, T. Matsumoto, H. Sawada, Y. Kohno, S. Otomo, R. Minato, Y. Ikuhara: Imaging of built-in electric field at a p-n junction by scanning transmission electron microscopy, Sci. Rep. 5, 10040 (2015)

    CAS  Google Scholar 

  • K. Müller-Caspary, O. Oppermann, T. Grieb, F.F. Krause, A. Rosenauer, M. Schowalter, T. Mehrtens, A. Beyer, K. Volz, P. Potapov: Materials characterisation by angle-resolved scanning transmission electron microscopy, Sci. Rep. 6, 37146 (2016)

    Google Scholar 

  • E.M. Waddell, J.N. Chapman: Linear imaging of strong phase objects using asymmetrical detectors in STEM, Optik 54, 83–96 (1979)

    Google Scholar 

  • K. Müller, F.F. Krause, A. Béché, M. Schowalter, V. Galioit, S. Löffler, J. Verbeeck, J. Zweck, P. Schattschneider, A. Rosenauer: Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nat. Commun. 5, 5653 (2014)

    Google Scholar 

  • H. Yang, R.N. Rutte, L. Jones, M. Simson, R. Sagawa, H. Ryll, M. Huth, T.J. Pennycook, M.L.H. Green, H. Soltau, Y. Kondo, B.G. Davis, P.D. Nellist: Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures, Nat. Commun. 7, 12532 (2016)

    CAS  Google Scholar 

  • J.M. Rodenburg, R.H.T. Bates: The theory of super-resolution electron microscopy via Wigner-distribution deconvolution, Philos. Trans. Royal Soc. A 339, 521–553 (1992)

    Google Scholar 

  • J.M. Rodenburg, B.C. McCallum, P.D. Nellist: Experimental tests on double-resolution coherent imaging via STEM, Ultramicroscopy 48, 303–314 (1993)

    Google Scholar 

  • T.A. Caswell, P. Ercius, M.W. Tate, A. Ercan, S.M. Gruner, D.A. Muller: A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope, Ultramicroscopy 109, 304–311 (2009)

    CAS  Google Scholar 

  • H. Ryll, M. Simson, R. Hartmann, P. Holl, M. Huth, S. Ihle, Y. Kondo, P. Kotula, A. Liebel, K. Müller-Caspary, A. Rosenauer, R. Sagawa, J. Schmidt, H. Soltau, L. Strüder: A pnCCD-based, fast direct single electron imaging camera for TEM and STEM, J. Instrum. 11, P04006 (2016)

    Google Scholar 

  • D. McGrouther, M. Krajnak, I. MacLaren, D. Maneuski, V. O'Shea, P.D. Nellist: Use of a hybrid silicon pixel (Medipix) detector as a STEM detector, Microsc. Microanal. 21(S3), 1595–1596 (2015)

    Google Scholar 

  • M.J. Humphry, B. Kraus, A.C. Hurst, A.M. Maiden, J.M. Rodenburg: Ptychographic electron microscopy using high-angle dark-field scattering for sub-nanometre resolution imaging, Nat. Commun. 3, 730 (2012)

    CAS  Google Scholar 

  • A.J. D'Alfonso, A.J. Morgan, A.W.C. Yan, P. Wang, H. Sawada, A.I. Kirkland, L.J. Allen: Deterministic electron ptychography at atomic resolution, Phys. Rev. B 89, 064101 (2014)

    Google Scholar 

  • J.C.H. Spence: Direct inversion of dynamical electron diffraction patterns to structure factors, Acta Crystallogr. A 54, 7–18 (1998)

    Google Scholar 

  • J.C.H. Spence: Crystal structure determination by direct inversion of dynamical microdiffraction patterns, J. Microsc. 190, 214–221 (1998)

    Google Scholar 

  • W. Van den Broek, C.T. Koch: General framework for quantitative three-dimensional reconstruction from arbitrary detection geometries in TEM, Phys. Rev. B 87, 184108 (2013)

    Google Scholar 

  • S. Gao, P. Wang, F. Zhang, G.T. Martinez, P.D. Nellist, X. Pan, A.I. Kirkland: Electron ptychographic microscopy for three-dimensional imaging, Nat. Commun. 8, 163 (2017)

    Google Scholar 

  • H. Yang, J.G. Lozano, T.J. Pennycook, L. Jones, P.B. Hirsch, P.D. Nellist: Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning, Nat. Commun. 6, 7266 (2015)

    CAS  Google Scholar 

  • E.C. Cosgriff, P.D. Nellist, A.J. D'Alfonso, S.D. Findlay, G. Behan, P. Wang, L.J. Allen, A.I. Kirkland: Image contrast in aberration-corrected scanning confocal electron microscopy, Adv. Imaging Electron Phys. 162, 45–76 (2010)

    CAS  Google Scholar 

  • K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook: Three-dimensional imaging of individual hafnium atoms inside a semiconductor device, Appl. Phys. Lett. 87, 034104 (2005)

    Google Scholar 

  • A.Y. Borisevich, A.R. Lupini, S.J. Pennycook: Depth sectioning with the aberration-corrected scanning transmission electron microscope, Proc. Natl. Acad. Sci. U.S.A. 103, 3044–3048 (2006)

    CAS  Google Scholar 

  • G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist: Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope, Philos. Trans. Royal Soc. A 367, 3825–3844 (2009)

    CAS  Google Scholar 

  • B.R. Frieden: Optical transfer of the three-dimensional object, J. Opt. Soc. Am. 57, 36–41 (1967)

    Google Scholar 

  • P.D. Nellist: Electron-optical sectioning for three-dimensional imaging of crystal defect structures, Mater. Sci. Semicond. Process. 65, 18–23 (2017)

    CAS  Google Scholar 

  • P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Heth\hack{\-}erington: Confocal operation of a transmission electron microscope with two aberration correctors, Appl. Phys. Lett. 89, 124105 (2006)

    Google Scholar 

  • K. Mitsuishi, A. Hashimoto, M. Takeguchi, M. Shimojo, K. Ishizuka: Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy: II. Point spread function analysis, Ultramicroscopy 112, 53–60 (2012)

    CAS  Google Scholar 

  • P.D. Nellist, P. Wang: Optical sectioning and confocal imaging and analysis in the transmission electron microscope, Annu. Rev. Mater. Res. 42, 125–143 (2012)

    CAS  Google Scholar 

  • P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist: Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope, Phys. Rev. Lett. 104, 200801 (2010)

    Google Scholar 

  • P. Wang, A. Hashimoto, M. Takeguchi, K. Mitsuishi, M. Shimojo, Y. Zhu, M. Okuda, A.I. Kirkland, P.D. Nellist: Three-dimensional elemental mapping of hollow Fe2O3@SiO2 mesoporous spheres using scanning confocal electron microscopy, Appl. Phys. Lett. 100, 213117 (2012)

    Google Scholar 

  • J.G. Lozano, H. Yang, M.P. Guerrero-Lebrero, A.J. D’Alfonso, A. Yasuhara, E. Okunishi, S. Zhang, C.J. Humphreys, L.J. Allen, P.L. Galindo, P.B. Hirsch, P.D. Nellist: Direct observation of depth-dependent atomic displacements associated with dislocations in gallium nitride, Phys. Rev. Lett. 113, 135503 (2014)

    CAS  Google Scholar 

  • A.M. Maiden, M.J. Humphry, J.M. Rodenburg: Ptychographic transmission microscopy in three dimensions using a multi-slice approach, J. Opt. Soc. Am. A 29, 1606–1614 (2012)

    CAS  Google Scholar 

  • R. Brydson: Electron Energy Loss Spectroscopy, 1st edn. (BIOS, Oxford 2001)

    Google Scholar 

  • R.F. Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum, New York 1996)

    Google Scholar 

  • H.A. Brink, M.M.G. Barfels, R.P. Burgner, B.N. Edwards: A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs, Ultramicroscopy 96, 367–384 (2003)

    CAS  Google Scholar 

  • A. Gubbens, M. Barfels, C. Trevor, R. Twesten, P. Mooney, P. Thomas, N. Menon, B. Kraus, C. Mao, B. McGinn: The GIF Quantum, a next generation post-column imaging energy filter, Ultramicroscopy 110, 962–970 (2010)

    CAS  Google Scholar 

  • P.C. Tiemeijer: Operation modes of a TEM monochromator. In: Proc. EMAG99 (1999) pp. 191–194

    Google Scholar 

  • M. Mukai, J.S. Kim, K. Omoto, H. Sawada, A. Kimura, A. Ikeda, J. Zhou, T. Kaneyama, N.P. Young, J.H. Warner, P.D. Nellist, A.I. Kirkland: The development of a 200kV monochromated field emission electron source, Ultramicroscopy 140, 37–43 (2014)

    CAS  Google Scholar 

  • O.L. Krivanek, T.C. Lovejoy, N. Dellby, T. Aoki, R.W. Carpenter, P. Rez, E. Soignard, J. Zhu, P.E. Batson, M.J. Lagos, R.F. Egerton, P.A. Crozier: Vibrational spectroscopy in the electron microscope, Nature 514, 209–212 (2014)

    CAS  Google Scholar 

  • B. Rafferty, L.M. Brown: Direct and indirect transitions in the region of the band gap using electron-energy-loss spectroscopy, Phys. Rev. B 58, 10326 (1998)

    CAS  Google Scholar 

  • R. Senga, K. Suenaga: Single-atom electron energy loss spectroscopy of light elements, Nat. Commun. 6, 7943 (2015)

    CAS  Google Scholar 

  • N.D. Browning, M.F. Chisholm, S.J. Pennycook: Atomic-resolution chemical analysis using a scanning transmission electron microscope, Nature 366, 143–146 (1993)

    CAS  Google Scholar 

  • P.E. Batson: Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity, Nature 366, 727–728 (1993)

    CAS  Google Scholar 

  • M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook: Spectroscopic imaging of single atoms within a bulk solid, Phys. Rev. Lett. 92, 095502 (2004)

    CAS  Google Scholar 

  • E.J. Monkman, C. Adamo, J.A. Mundy, D.E. Shai, J.W. Harter, D. Shen, B. Burganov, D.A. Muller, D.G. Schlom, K.M. Shen: Quantum many-body interactions in digital oxide superlattices, Nat. Mater. 11, 855–859 (2012)

    CAS  Google Scholar 

  • D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G.A. Botton: Multipolar Plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe, Nano Lett. 11, 1499–1504 (2011)

    CAS  Google Scholar 

  • N. Bonnet, N. Brun, C. Colliex: Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97–112 (1999)

    CAS  Google Scholar 

  • M. Varela, M.P. Oxley, W. Luo, J. Tao, M. Watanabe, A.R. Lupini, S.T. Pantelides, S.J. Pennycook: Atomic-resolution imaging of oxidation states in manganites, Phys. Rev. B 79, 085117 (2009)

    Google Scholar 

  • S.J.B. Reed: The single-scattering model and spatial-resolution in x-ray analysis of thin foils, Ultramicroscopy 7, 405–409 (1982)

    CAS  Google Scholar 

  • L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook: Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy, Phys. Rev. Lett. 91, 105503 (2003)

    CAS  Google Scholar 

  • R.H. Ritchie, A. Howie: Inelastic scattering probabilities in scanning transmission electron microscopy, Philos. Mag. A 58, 753–767 (1988)

    Google Scholar 

  • H. Kohl, H. Rose: Theory of image formation by inelastically scattered electrons in the electron microscope, Adv. Electron. Electron Phys. 65, 173–227 (1985)

    CAS  Google Scholar 

  • D.A. Muller, J. Silcox: Delocalisation in inelastic imaging, Ultramicroscopy 59, 195–213 (1995)

    CAS  Google Scholar 

  • B. Rafferty, S.J. Pennycook: Towards atomic column-by-column spectroscopy, Ultramicroscopy 78, 141–151 (1999)

    CAS  Google Scholar 

  • E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook: The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope, Ultramicroscopy 102, 317–326 (2005)

    CAS  Google Scholar 

  • M.P. Oxley, E.C. Cosgriff, L.J. Allen: Nonlocality in imaging, Phys. Rev. Lett. 94, 203906 (2005)

    CAS  Google Scholar 

  • D.B. Williams, C.B. Carter: Transmission Electron Microscopy, 1st edn. (Plenum, New York 1996)

    Google Scholar 

  • M. Watanabe, D.B. Williams: Atomic-level detection by x-ray microanalysis in the analytical electron microscope, Ultramicroscopy 78, 89–101 (1999)

    CAS  Google Scholar 

  • H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde: An integrated multiple silicon drift detector system for transmission electron microscopes, J. Phys. Conf. Ser. 241(1), 012015 (2009)

    Google Scholar 

  • A.J. D’Alfonso, B. Freitag, D. Klenov, L.J. Allen: Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy, Phys. Rev. B 81, 100101 (2010)

    Google Scholar 

  • Y. Zhu, H. Inada, K. Nakamura, J. Wall: Imaging single atoms using secondary electrons with an aberration-corrected electron microscope, Nat. Mater. 8, 808–812 (2009)

    CAS  Google Scholar 

  • H. Mullejans, A.L. Bleloch, A. Howie, M. Tomita: Secondary-electron coincidence detection and time-of-flight spectroscopy, Ultramicroscopy 52, 360–368 (1993)

    CAS  Google Scholar 

  • M. Kociak, L.F. Zagonel: Cathodoluminescence in the scanning transmission electron microscope, Ultramicroscopy 176, 112–131 (2017)

    CAS  Google Scholar 

  • E.M. James, N.D. Browning: Practical aspects of atomic resolution imaging and analysis in STEM, Ultramicroscopy 78, 125–139 (1999)

    CAS  Google Scholar 

  • P.W. Hawkes, E. Kasper: Principles of Electron Optics, 2nd edn. (Academic Press, London 2017)

    Google Scholar 

  • L.W. Swanson, L.C. Crouser: Total energy distribution of field-emitted electrons and single-plane work functions for tungsten, Phys. Rev. 163, 622 (1967)

    CAS  Google Scholar 

  • C. Dwyer, R. Erni, J. Etheridge: Measurement of effective source distribution and its importance for quantitative interpretation of STEM images, Ultramicroscopy 110, 952–957 (2010)

    CAS  Google Scholar 

  • R.H. Wade: A brief look at imaging and contrast theory, Ultramicroscopy 46, 145–156 (1992)

    CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook: Subangstrom resolution by underfocussed incoherent transmission electron microscopy, Phys. Rev. Lett. 81, 4156–4159 (1998)

    CAS  Google Scholar 

  • P.D. Nellist, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z. Szilagyi, A.R. Lupini, S.J. Pennycook: Towards sub-0.5 ångstrom beams through aberration corrected STEM. In: Proc. EMAG2003 (IOP, London 2003) pp. 159–164

    Google Scholar 

  • M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban: A spherical-aberration-corrected 200 kV transmission electron microscope, Ultramicroscopy 75, 53–60 (1998)

    CAS  Google Scholar 

  • Z. Shao: On the fifth order aberration in a sextupole corrected probe forming system, Rev. Sci. Instrum. 59, 2429–2437 (1988)

    Google Scholar 

  • H. Rose: Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik 85, 19–24 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Nellist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nellist, P.D. (2019). Scanning Transmission Electron Microscopy. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_2

Download citation