Visualizing Electronic Quantum Matter

Part of the Springer Handbooks book series (SHB)


Modern quantum materials support a wide variety of exotic and unanticipated states of quantum matter and differ radically in phenomenology from conventional systems such as metals, semiconductors, band insulators, and ferromagnets. For example, quantum materials exhibit states such as electron liquid crystals, fluids of fractionalized quantum particles, quantum-entangled spin liquids, and topologically protected composite quantum particles. However, predictive theory is not fully developed for these forms of electronic quantum matter () and exploratory empirical research is required to discover and understand their properties. One of the most powerful and productive new techniques to achieve this is direct visualization of EQM at the atomic scale. For EQM, as with many highly complex systems in nature, seeing is believing and understanding. Here we describe the experimental, theoretical and analysis techniques of atomic-resolution spectroscopic imaging scanning tunneling microscopy (SI-STM) that allow such complex and enigmatic electronic/magnetic states to be directly visualized, identified, and understood.

electronic quantum matter quasiparticle interference imaging high temperature superconductor topological insulator composite heavy fermion electronic liquid crystal pair density wave 



J.C.S.D, M.H.H, and S.D.E. acknowledge support from the Moore Foundation's EPiQS Initiative through Grant GBMF4544. J.C.S.D, P.O.S., and K.F. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, under contract number DEAC02-98CH10886. J.C.S.D. acknowledges support from the European Research Council (ERC) under Award #DLV-788932, and from Science Foundation Ireland under Award 17/RF/5445. All the authors wish to acknowledge and thank our collaborators T. Hanaguri, P.J. Hirschfeld, J.E. Hoffman, E.W. Hudson, E.-A. Kim, Y. Kohsaka, A. Kostin, S.A. Kivelson, S. Lederer, K.M. Lang, M.J. Lawler, C. Lupien, Jhinhwan Lee, Jinho Lee, V. Madhavan, K. McElroy, J.W. Orenstein, S.H. Pan, S. Sachdev, R. Simmonds, A. Schmidt, J.P. Sethna, J. Slezak, H. Takagi, C. Taylor, P. Wahl, & A.P.Mackenzie.


  1. K. Yosida: Theory of Magnetism (Springer, Berlin, Heidelberg 1996)Google Scholar
  2. J.R. Schrieffer: Theory of Superconductivity (Perseus, New York 1991)Google Scholar
  3. G. Grüner: Density Waves in Solids (Addison-Wesley, Boston 1989)Google Scholar
  4. N.W. Ashcroft, N.D. Mermin: Solid State Physics (Brooks Cole, Boston 1976)Google Scholar
  5. A.C. Hewson: The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge 1993)Google Scholar
  6. A.J. Schofield: Non-Fermi liquids, Contemp. Phys. 40, 95–115 (1999)Google Scholar
  7. P. Coleman: Handbook of Magnetism and Advanced Magnetic Materials, Vol. 1 (Wiley, Hoboken 2007)Google Scholar
  8. J. Kondo: Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32, 37–49 (1964)Google Scholar
  9. G.R. Stewart: Heavy-fermion systems, Rev. Mod. Phys. 56, 755–787 (1984)Google Scholar
  10. F. Steglich: Superconductivity and magnetism in heavy-fermion compounds, J. Phys. Soc. Jpn. 74, 167–177 (2005)Google Scholar
  11. P. Fulde, J. Keller, G. Zwicknagl: Theory of heavy fermion systems, Solid State Phys. 41, 1–151 (1988)Google Scholar
  12. N.F. Mott: The basis of the electron theory of metals, with special reference to the transition metals, Proc. Phys. Soc. A 62, 416 (1949)Google Scholar
  13. A. Georges, L. de' Medici, J. Mravlje: Strong correlations from Hund's coupling, Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013)Google Scholar
  14. L. de' Medici, S.R. Hassan, M. Capone, X. Dai: Orbital-selective Mott transition out of band degeneracy lifting, Phys. Rev. Lett. 102, 126401 (2009)Google Scholar
  15. E. Jakobi, N. Blüme, P. van Dongen: Orbital-selective Mott transitions in a doped two-band Hubbard model, Phys. Rev. B 80, 115109 (2009)Google Scholar
  16. L. de' Medici, J. Mravlje, A. Georges: Janus-faced influence of Hund's rule coupling in strongly correlated materials, Phys. Rev. Lett. 107, 256401 (2011)Google Scholar
  17. L. Balents: Spin liquids in frustrated magnets, Nature 464, 199 (2010)Google Scholar
  18. P.A. Lee, N. Nagaos, X.-G. Wen: Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78, 17 (2006)Google Scholar
  19. E. Dagotto: Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66, 763 (1994)Google Scholar
  20. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg: Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996)Google Scholar
  21. N. Read, S. Sachdev: Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets, Phys. Rev. Lett. 62, 1694 (1989)Google Scholar
  22. J. Zaanen, O. Gunnarsson: Charged magnetic domain lines and the magnetism of high-Tc oxides, Phys. Rev. B 40, 7391 (1989)Google Scholar
  23. S.A. Kivelson, E. Fradkin, V.J. Emery: Electronic liquid-crystal phases of a doped Mott insulator, Nature 393, 550 (1998)Google Scholar
  24. V.J. Emery, S.A. Kivelson, J.M. Tranquada: Striped phases in high-temperature superconductors, Proc. Natl. Acad. Sci. USA 96, 8814 (1999)Google Scholar
  25. S. Sachdev: Colloquium: Order and quantum phase transitions in the cuprate superconductors, Rev. Mod. Phys. 75, 913 (2003)Google Scholar
  26. S.A. Kivelson, E. Fradkin, J. Tranquada: Colloquium: Theory of intertwined orders in high temperature superconductors, Rev. Mod. Phys. 87, 457 (2015)Google Scholar
  27. S.H. Pan, E.W. Hudson, J.C. Davis: 3He refrigerator based very low temperature scanning tunneling microscope, Rev. Sci. Instrum. 70, 1459–1463 (1999)Google Scholar
  28. K. Fujita, M. Hamidian, I. Firmo, S. Mukhopadhyay, C.K. Kim, H. Eisaki, S. Uchida, J.C. Davis: Spectroscopic imaging STM. In: Strongly Correlated Systems—Experimental Techniques, ed. by A. Avella, F. Mancini (Springer, Berlin Heidelberg 2014)Google Scholar
  29. R.J. Hamers, R.M. Tromp, J.E. Demuth: Surface electronic structure of Si(111)-(7×7) resolved in real space, Phys. Rev. Lett. 56, 1972 (1986)Google Scholar
  30. H.L. Edwards, D.J. Derro, A.L. Barr, J.T. Markert, A.L. de Lozanne: Spatially varying energy gap in the CuO chains of YBa2Cu3O7−x detected by scanning tunneling spectroscopy, Phys. Rev. Lett. 75, 1387 (1995)Google Scholar
  31. M.H. Hamidian, I.A. Firmo, K. Fujita, S. Mukhopadhyay, J.W. Orenstein, H. Eisaki, S. Uchida, M.J. Lawler, E.-A. Kim, J.C. Davis: Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM, New J. Phys. 14, 053017 (2012)Google Scholar
  32. J.A. Slezak, J. Lee, M. Wang, K. McElroy, K. Fujita, B.M. Anderson, P.J. Hirschfeld, H. Eisaki, S. Uchida, J.C. Davis: Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells, Proc. Natl. Acad. Sci. USA 105, 3203–3208 (2008)Google Scholar
  33. K. Fujita, M.H. Hamidian, S.D. Edkins, C.K. Kim, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, H. Eisaki, S. Uchida, A. Allais, M.J. Lawler, E.-A. Kim, S. Sachdev, J.C. Séamus Davis: Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates, Proc. Natl. Acad. Sci. USA 111(30), E3026–E3032 (2014)Google Scholar
  34. M.H. Hamidian, S.D. Edkins, C.K. Kim, J.C. Séamus Davis, A.P. Mackenzie, H. Eisaki, S. Uchida, M.J. Lawler, E.-A. Kim, S. Sachdev, K. Fujita: Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state, Nat. Phys. 12(2), 150–156 (2016)Google Scholar
  35. P.M. Chaikin, T.C. Lubensky: Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge 2010)Google Scholar
  36. M. Hamidian, S.D. Edkins, S.H. Joo, A. Kostin, H. Eisaki, S. Uchida, M.J. Lawler, E.-A. Kim, A.P. MacKenzie, K. Fujita, J. Lee, J.C. Séamus Davis: Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x, Nature 532, 343 (2016)Google Scholar
  37. J. Šmakov, I. Martin, A.V. Balatsky: Josephson scanning tunneling microscopy, Phys. Rev. B 64, 212506 (2001)Google Scholar
  38. O. Naaman, W. Teizer, R.C. Dynes: Flucuation dominated Josephson tunneling with a scanning tunneling microscope, Phys. Rev. Lett. 87, 097004 (2001)Google Scholar
  39. J.G. Rodrigo, H. Suderow, S. Vieria: On the use of STM superconducting tips at very low temperatures, Eur. Phys. J. 40, 483 (2004)Google Scholar
  40. T. Proslier, A. Kohen, Y. Noat, T. Cren, D. Roditchev, W. Sacks: Probing the superconducting condensate on a nanometer scale, Europhys. Lett. 73, 962 (2006)Google Scholar
  41. H. Kimura, R.P. Barber Jr., S. Ono, Y. Ando, R.C. Dynes: Scanning Josephson tunneling microscopy of single-crystal Bi2Sr2CaCu2O8+δ with a conventional superconducting tip, Phys. Rev. Lett. 101, 037002 (2008)Google Scholar
  42. M.F. Crommie, C.P. Lutz, D.M. Eigler: Imaging standing waves in a two-dimensional electron gas, Nature 363, 524–527 (1993)Google Scholar
  43. A. Yazdani, B.A. Jones, C.P. Lutz, D.M. Eigler: Probing the local effects of magnetic impurities on superconductivity, Science 275, 1767–1770 (1997)Google Scholar
  44. A.V. Balatsky, I. Vekhter, J.-X. Zhu: Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78, 373 (2006)Google Scholar
  45. S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis: Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ, Nature 403, 746 (2000)Google Scholar
  46. E.W. Hudson, K.M. Lang, V. Madhavan, S.H. Pan, H. Eisaki, S. Uchida, J.C. Davis: Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ, Nature 411, 920 (2001)Google Scholar
  47. Q.-H. Wang, D.-H. Lee: Quasiparticle scattering interference in high-temperature superconductors, Phys. Rev. B 67(R), 020511 (2003)Google Scholar
  48. L. Capriotti, D.J. Scalapino, R.D. Sedgewick: Wave-vector power spectrum of the local tunneling density of states, Phys. Rev. B 68, 014508 (2003)Google Scholar
  49. T. Yuan, J. Figgins, D.K. Morr: Hidden order transition in URu2Si2: Evidence for the emergence of a coherent Anderson lattice from scanning tunneling spectroscopy, Phys. Rev. B 86, 035129 (2012)Google Scholar
  50. J. Lee, M.P. Allan, M.A. Wang, J. Farrell, S.A. Grigera, F. Baumberger, J.C. Davis, A.P. Mackenzie: Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7, Nat. Phys. 5, 800–804 (2009)Google Scholar
  51. A.R. Schmidt, M.H. Hamidian, P. Wahl, F. Meier, A.V. Balatsky, J.D. Garrett, T.J. Williams, G.M. Luke, J.C. Davis: Imaging the Fano lattice to ‘hidden order' transition in URu2Si2, Nature 465, 570–576 (2010)Google Scholar
  52. M.P. Allan, F. Massee, D.K. Morr, J. van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis: Imaging cooper pairing of heavy fermions in CeCoIn5, Nat. Phys. 9, 468–473 (2013)Google Scholar
  53. H. Pirie, J.E. Hoffman, Y. He, M.M. Yee, A. Soumyanarayanan, D.-J. Kim, Z. Fisk, D. Morr, M.H. Hamidian: Visualizing the topologically induced states of strongly correlated electrons in SmB6, Bull. Am. Phys. Soc. 62, MARS37010P (2017)Google Scholar
  54. P.O. Sprau, A. Kostin, A. Kreisel, A.E. Böhmer, V. Taufour, P.C. Canfield, S. Mukherjee, P.J. Hirschfeld, B.M. Andersen, J.C. Séamus Davis: Discovery of orbital-selective Cooper pairing in FeSe, Science 357, 75 (2017)Google Scholar
  55. M.Z. Hasan, C.L. Kane: Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010)Google Scholar
  56. I. Lee, C.K. Kim, J. Lee, S.J.L. Billinge, R. Zhong, J.A. Schneeloch, T. Liu, T. Valla, J.M. Tranquada, G. Gu, J.C. Séamus Davis: Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3, Proc. Natl. Acad. Sci. USA 112, 1316 (2015)Google Scholar
  57. A. Georges, L. de' Medici, J. Mravlje: Strong correlations from Hund's coupling, Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013)Google Scholar
  58. E. Pavarini: Hund's metals: Explained. In: The Physics of Correlated Insulators, Metals, and Superconductors Modeling and Simulation, Vol. 7, ed. by E. Koch, R. Scalettar, R. Martin (Forschungszentrum Jülich, Jülich 2017)Google Scholar
  59. Z.P. Yin, K. Haule, G. Kotliar: Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides, Nat. Mater. 10, 932–935 (2011)Google Scholar
  60. J.E. Hoffman, K. McElroy, D.-H. Lee, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis: Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ, Science 297, 1148 (2002)Google Scholar
  61. K. McElroy, R.W. Simmonds, J.E. Hoffman, D.-H. Lee, J. Orenstein, H. Eisaki, S. Uchida, J.C. Davis: Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ, Nature 422, 592 (2003)Google Scholar
  62. T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano, H. Takagi, J.C. Davis: A ‘checkerboard' electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2, Nature 430, 1001 (2004)Google Scholar
  63. Y. Kohsaka, C. Taylor, P. Wahl, A. Schmidt, J. Lee, K. Fujita, J.W. Alldredge, K. McElroy, J. Lee, H. Eisaki, S. Uchida, D.-H. Lee, J.C. Davis: How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ, Nature 454, 1072 (2008)Google Scholar
  64. J. Lee, K. Fujita, A.R. Schmidt, C.K. Kim, H. Eisaki, S. Uchida, J.C. Davis: Spectroscopic fingerprint of phase-incoherent superconductivity in the cuprate pseudogap state, Science 325, 1099 (2009)Google Scholar
  65. M.P. Allan, A.W. Rost, A.P. Mackenzie, Y. Xie, J.C. Davis, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, T.-M. Chuang: Anisotropic energy gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs, Science 336, 563 (2012)Google Scholar
  66. M.J. Lawler, K. Fujita, J. Lee, A.R. Schmidt, Y. Kohsaka, C.K. Kim, H. Eisaki, S. Uchida, J.C. Davis, J.P. Sethna, E.-A. Kim: Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states, Nature 466, 374 (2010)Google Scholar
  67. K. McElroy, J. Lee, J.A. Slezak, D.-H. Lee, H. Eisaki, S. Uchida, J.C. Davis: Atomic-scale sources and mechanisms of electronic disorder in Bi2Sr2CaCu2O8+δ, Science 309, 1048 (2005)Google Scholar
  68. S.H. Pan, J.P. O’Neal, R.L. Badzey, C. Chamon, H. Ding, J.R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A.K. Gupta, K.-W. Ng, E.W. Hudson, K.M. Lang, J.C. Daivs: Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x, Nature 413, 282 (2001)Google Scholar
  69. K.M. Lang, V. Madhavan, J.E. Hoffman, E.W. Hudson, H. Eisaki, S. Uchida, J.C. Davis: Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ, Nature 415, 412 (2002)Google Scholar
  70. M.H. Hamidian, A.R. Schmidt, I.A. Firmo, M.P. Allan, P. Bradley, J.D. Garrett, T.J. Williams, G.M. Luke, Y. Dubi, A.V. Balatsky, J.C. Davis: How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder, Proc. Natl. Acad. Sci. USA 108, 18233 (2011)Google Scholar
  71. A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, J.C. Davis, S. Sachdev, J. Zaanen, M.J. Lawler, E.-A. Kim: Topological defects coupling smectic modulations to intra-unit-cell nematicity in cuprates, Science 333, 426 (2011)Google Scholar
  72. T.-M. Chuang, M.P. Allan, J. Lee, Y. Xie, N. Ni, S.L. Bud'ko, G.S. Boebinger, P.C. Canfield, J.C. Davis: Nematic electronic structure in the iron-based superconductor Ca(Fe1−xCox)2As2, Science 327, 181 (2010)Google Scholar
  73. J.E. Hoffman, E.W. Hudson, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, J.C. Davis: A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ, Science 295, 466 (2002)Google Scholar
  74. Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J.C. Davis: An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates, Science 315, 1380 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Condensed Matter Physics & Materials Science Dept.Brookhaven National LaboratoryUpton, NYUSA
  2. 2.Dept. of PhysicsHarvard UniversityCambridge, MAUSA
  3. 3.Dept. of PhysicsUniversity of California, San DiegoLa Jolla, CAUSA
  4. 4.Dept. of Applied PhysicsStanford UniversityStanford, CAUSA
  5. 5.Clarendon LaboratoryUniversity of OxfordOxfordUK
  6. 6.Dept. of PhysicsUniversity College CorkCorkIreland

Personalised recommendations