Skip to main content

Spectroscopy with the Low Energy Electron Microscope

  • Chapter
  • First Online:
Springer Handbook of Microscopy

Part of the book series: Springer Handbooks ((SHB))

Abstract

Photo electron emission microscopy (PEEM), going back to the earliest days of electron microscopy, and low-energy electron microscopy (LEEM), successfully deployed since the late 1980s, are examples of cathode lens microscopy in which the sample itself is an integral part of the image forming system. While applications have naturally gravitated towards the acquisition of images to elucidate structure and structural evolution, recent years have also seen a rapidly expanding range of spectroscopic capabilities. These address, for example, the occupied and unoccupied electronic band structures of materials, electrical transport in 2-D systems, crystal growth and 2-D strain, inelastic electron energy loss mechanisms, as well as radiation damage in organic materials during low-energy electron irradiation. In this chapter, we discuss applications of these new spectroscopic methods, as well as recent instrumental developments that further expand the potential uses of cathode lens microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 359.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • O. Hayes Griffith, W. Engel: Historical perspective and current trends in emission microscopy, mirror electron microscopy and low-energy electron microscopy, Ultramicroscopy 36, 1–28 (1991)

    Google Scholar 

  • E. Bauer: Surface Microscopy with Low Energy Electrons (Springer, Berlin 2014)

    Google Scholar 

  • E. Brüche: Elektronenmikroskopische Abbildung mit lichtelektrischen Elektronen, Z. Phys. 86, 448 (1933)

    Google Scholar 

  • M. Knoll, E. Ruska: Das Elektronenmikroskop, Z. Phys. 78, 318–339 (1932)

    CAS  Google Scholar 

  • D. Gabor: The Electron Microscope—Its Development, Present Performance and Future Possibilities (Chemical Publishing, Brooklyn, New York 1948)

    Google Scholar 

  • P.W. Hawkes: The long road to spherical aberration correction, Biol. Cell 93, 432–439 (2001)

    Google Scholar 

  • W. Engel: Emission microscopy with different kinds of electron emission. In: Proc. 6th Intern. Congr. Electron Microsc., Kyoto, ed. by R. Ueda (Maruzen, Tokyo 1966) pp. 217–218

    Google Scholar 

  • E. Bauer: A brief history of PEEM, J. Electron Spectrosc. Relat. Phenom. 185, 314–322 (2012)

    CAS  Google Scholar 

  • L. Mayer: Electron mirror microscopy of magnetic domains, J. Appl. Phys. 28, 975–983 (1957)

    Google Scholar 

  • A.E. Luk'yanov, G.V. Spivak, R.S. Gvozdover: Mirror electron microscopy, Sov. Phys. Usp. 16, 529–552 (1973)

    Google Scholar 

  • W. Telieps, E. Bauer: An analytical reflection and emission UHV surface electron microscope, Ultramicroscopy 17, 57–66 (1985)

    CAS  Google Scholar 

  • R.M. Tromp, M.C. Reuter: Design of a new photo-emission/low-energy electron microscope for surface studies, Ultramicroscopy 36, 99–106 (1991)

    Google Scholar 

  • L.H. Veneklasen: Design of a spectroscopic low-energy electron microscope, Ultramicroscopy 36, 76–90 (1991)

    Google Scholar 

  • M.S. Altman, H. Pinkvos, J. Hurst, H. Poppa, G. Marx, E. Bauer: Polarized low energy electron microscopy of surface magnetic structure, Mater. Res. Soc. Symp. Proc. 232, 125 (1991)

    CAS  Google Scholar 

  • G.F. Rempfer, D.M. Desloge, W.P. Skoczylas, O.H. Griffith: Simultaneous correction of spherical and chromatic aberrations with an electron mirror: an electron optical achromat, Microsc. Microanal. 3, 14–27 (1997)

    CAS  Google Scholar 

  • R. Fink, M.R. Weiss, E. Umbach, D. Preikszas, R. Spehr, P. Hartel, W. Engel, R. Degenhardt, R. Wichtendahl, H. Kuhlenbeck, K. Ihmann, R. Schlögl, H.-J. Freund, A.M. Bradshaw, T. Schmidt, E. Bauer, G. Benner: SMART: a planned ultrahigh-resolution spectromicroscope for BESSY II, J. Electron Spectrosc. Relat. Phenom. 84, 231–250 (1997)

    CAS  Google Scholar 

  • R.M. Tromp, J.B. Hannon, A.W. Ellis, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design, Ultramicroscopy 110, 852–861 (2010)

    CAS  Google Scholar 

  • R.M. Tromp, J.B. Hannon, W. Wan, A. Berghaus, O. Schaff: A new aberration-corrected, energy-filtered LEEM/PEEM instrument. II. Operation and results, Ultramicroscopy 127, 25–39 (2013)

    CAS  Google Scholar 

  • T. Schmidt, H. Marchetto, P.L. Lévesque, U. Groh, F. Maier, D. Preikszas, P. Hartel, R. Spehr, G. Lilienkamo, W. Engel, R. Fink, E. Bauer, H. Rose, E. Umbach, H.-J. Freund: Double aberration correction in a low-energy electron microscope, Ultramicroscopy 110, 1358–1361 (2010)

    CAS  Google Scholar 

  • R. Comin, A. Damascelli: ARPES: a probe of electronic correlations. In: Strongly Correlated Systems, Springer Series in Solid-State Sciences, Vol. 180, ed. by A. Avella, F. Mancini (Springer, Berlin 2014) pp. 31–71

    Google Scholar 

  • Y. Fujikawa, T. Sakurai, R.M. Tromp: Micrometer-scale band mapping of single silver islands in real and reciprocal space, Phys. Rev. B 79, 121401 (2009)

    Google Scholar 

  • C. Tusche, M. Ellguth, A. Krasyuk, A. Winkelmann, D. Kutnyakhov, P. Luschyk, K. Medjanik, G. Schönhense, J. Kirchner: Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter, Ultramicroscopy 130, 70–76 (2013)

    CAS  Google Scholar 

  • G. Schönhense, K. Medjanik, H.-J. Elmers: Space-, time- and spin-resolved photoemission, J. Electron Spectrosc. Relat. Phenom. 200, 94–118 (2015)

    Google Scholar 

  • E. Bauer: The resolution of the low energy electron reflection microscope, Ultramicroscopy 17, 51 (1985)

    CAS  Google Scholar 

  • G.F. Rempfer, O.H. Griffith: The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources, Ultramicroscopy 27, 273–300 (1989)

    CAS  Google Scholar 

  • A.B. Pang, T. Müller, M.S. Altman, E. Bauer: Fourier optics of image formation in LEEM, J. Phys. Condens. Matter 21, 314006 (2009)

    CAS  Google Scholar 

  • S.M. Kennedy, N.E. Schofield, D.M. Paganin, D.E. Jesson: Wave optical treatment of surface step contrast in low-energy electron microscopy, Surf. Rev. Lett. 16, 855–867 (2009)

    CAS  Google Scholar 

  • S.M. Schramm, A.B. Pang, M.S. Altman, R.M. Tromp: A contrast transfer function approach for image calculations in standard and aberration-corrected LEEM and PEEM, Ultramicroscopy 115, 88–108 (2012)

    CAS  Google Scholar 

  • R.M. Tromp, W. Wan, S.M. Schramm: Aberrations of the cathode objective lens up to fifth order, Ultramicroscopy 119, 33–39 (2012)

    CAS  Google Scholar 

  • J.B. Hannon, J. Sun, K. Pohl, G.L. Kellogg: Origins of nanoscale heterogeneity in ultrathin films, Phys. Rev. Lett. 96, 246103 (2006)

    CAS  Google Scholar 

  • J.I. Flege, E.E. Krasovskii: Intensity-voltage low-energy electron microscopy for functional materials characterization, Phys. Status Solidi Rapid Res. Lett. 8, 463–477 (2014)

    CAS  Google Scholar 

  • J. Jobst, J. Kautz, D. Geelen, R.M. Tromp, S.J. van der Molen: Nanoscale measurements of unoccupied band dispersion in few-layer graphene, Nature Commun. 6, 8926 (2015)

    CAS  Google Scholar 

  • J. Jobst, A.J.H. van der Torren, E.E. Krasovskii, J. Balgley, C.R. Dean, R.M. Tromp, S.J. van der Molen: Quantifying electron band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy, Nature Commun. 7, 13621 (2016)

    CAS  Google Scholar 

  • M. Henzler: LEED studies of surface imperfections, Appl. Surf. Sci. 11/12, 450–469 (1982)

    Google Scholar 

  • T.-M. Lu, M.G. Lagally: Diffraction from surfaces with randomly distributed steps, Surf. Sci. 120, 47–66 (1982)

    CAS  Google Scholar 

  • A.J.H. van der Torren: Growing Oxide Thin Films in a Low-Energy Electron Microscope, Ph.D. Thesis (Leiden Univ., Leiden 2016)

    Google Scholar 

  • K.L. Man, M.S. Altman: Small-angle lattice rotations in graphene on Ru(0001), Phys. Rev. B 84, 235415 (2011)

    Google Scholar 

  • J. Kautz, J. Jobst, C. Sorger, R.M. Tromp, H.B. Weber, S.J. van der Molen: Low-energy electron potentiometry: Contactless imaging of charge transport on the nanoscale, Sci. Rep. 5, 13604 (2015)

    CAS  Google Scholar 

  • L. Reimer (Ed.): Energy-Filtering Transmission Electron Microscopy (Springer, Berlin 1994)

    Google Scholar 

  • Y. Fujikawa, T. Sakurai, R.M. Tromp: Surface plasmon microscopy using an energy-filtered low energy electron microscope, Phys. Rev. Lett. 100, 126803 (2008)

    CAS  Google Scholar 

  • J. Sun, J.B. Hannon, R.M. Tromp, P. Johari, A.A. Bol, V.B. Shenoy, K. Pohl: Spatially-resolved structure and electronic properties of graphene on polycrystalline Ni, ACS Nano 4, 7073–7077 (2010)

    CAS  Google Scholar 

  • A. Thete, D. Geelen, S. Wuister, S.J. van der Molen, R.M. Tromp: Low-energy electron (0-100 eV) interaction with resists using LEEM, Proc. SPIE 9422, 94220A (2015)

    Google Scholar 

  • S. Bhattarai, A.R. Neureuther, P.A. Naulleau: Study of energy delivery and mean free path of low energy electrons in EUV resists, Proc. SPIE 9779, 97790B (2016)

    Google Scholar 

  • A. Thete, D. Geelen, S.J. van der Molen, R.M. Tromp: Charge catastrophe and dielectric breakdown during exposure of organic thin films to low-energy electron radiation, Phys. Rev. Lett. 119, 266803 (2017)

    CAS  Google Scholar 

  • R.M. Tromp: Low-voltage transmission electron microscopy, US Patent 85869191 (2013)

    Google Scholar 

  • D. Geelen, A. Thete, O. Schaff, A. Kaiser, S.J. van der Molen, R.M. Tromp: eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument, Ultramicroscopy 159, 482–487 (2015)

    CAS  Google Scholar 

  • S. Tanuma, C.J. Powell, D.R. Penn: Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range, Surf. Interface Anal. 43, 689–713 (2011)

    CAS  Google Scholar 

  • D. Gabor: A new microscopic principle, Nature 161, 777 (1948)

    CAS  Google Scholar 

  • C.J. Davisson, C.J. Calbick: Electron lenses, Phys. Rev. 42, 580 (1932)

    CAS  Google Scholar 

  • R.M. Tromp: Measuring and correcting aberrations of a cathode objective lens, Ultramicroscopy 111, 273–281 (2011)

    CAS  Google Scholar 

  • O. Scherzer: Über einige Fehler von Elektronenlinsen, Z. Phys. 101, 593–600 (1936)

    Google Scholar 

  • E. Abbe: Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Arch. Mikrosk. Anat. 9, 413–468 (1873)

    Google Scholar 

  • M. Herzberger, N.R. McClure: The design of superachromatic lenses, Appl. Opt. 2, 553–560 (1963)

    Google Scholar 

  • R.M. Tromp: Catadioptric aberration correction in cathode lens microscopy, Ultramicroscopy 151, 191–198 (2015)

    CAS  Google Scholar 

  • O. Scherzer: Sphärische and chromatische Korrektur von Elektronenlinsen, Optik 2, 114–132 (1947)

    CAS  Google Scholar 

  • A. Recknagel: Zur Theorie des Elektronenspiegels, Z. Phys. 104, 381–394 (1937)

    Google Scholar 

  • R. Rüdenberg: Electron lenses of hyperbolic field structure, J. Frankl. Inst. 246, 311–339–377–407 (1948)

    Google Scholar 

  • G.F. Rempfer: A theoretical study of the hyperbolic electron mirror as a correcting element for spherical and chromatic aberration in electron optics, J. Appl. Phys. 67, 6027–6040 (1990)

    CAS  Google Scholar 

  • W. Wan, J. Feng, H.A. Padmore, D.S. Robin: Simulation of a mirror corrector for PEEM3, Nucl. Instrum. Methods Phys. Res. A 519, 222–229 (2004)

    CAS  Google Scholar 

  • L. Wang, E. Munro, J. Rouse, H. Liu: Simulation of electron mirrors by the differential algebraic method, Phys. Procedia 1, 297–304 (2008)

    Google Scholar 

  • R.M. Tromp: Characterization of the cathode objective lens by real-space microspot low energy electron diffraction, Ultramicroscopy 130, 2–6 (2013)

    CAS  Google Scholar 

  • R.M. Tromp: An adjustable electron achromat for cathode lens microscopy, Ultramicroscopy 159, 497–502 (2015)

    CAS  Google Scholar 

  • R.M. Tromp, M.S. Altman: Defocus in cathode lens instruments, Ultramicroscopy 183, 2–7 (2017)

    CAS  Google Scholar 

  • S.M. Schramm, S.J. van der Molen, R.M. Tromp: Intrinsic instability of aberration-corrected electron microscopes, Phys. Rev. Lett. 109, 163901 (2012)

    CAS  Google Scholar 

  • J. Barthel, A. Thust: On the optical stability of high-resolution transmission electron microscopes, Ultramicroscopy 134, 6–17 (2013)

    CAS  Google Scholar 

  • R.M. Tromp, M. Mankos, M.C. Reuter, A.W. Ellis, M. Copel: A new low energy electron microscope, Surf. Rev. Lett. 5, 1189–1197 (1998)

    CAS  Google Scholar 

  • Elmitec: www.elmitec.de

  • R. Könenkamp, R. Word, G.F. Rempfer, T. Dixon, L. Almaraz, T. Jones: 5.4 nm spatial resolution in biological photoemission electron microscopy, Ultramicroscopy 110, 899–902 (2010)

    Google Scholar 

  • R. Sissingh: Metingen over de Elliptische Polarisatie van het Licht (S.C. van Doesburgh, Leiden 1885)

    Google Scholar 

  • C.J. Davisson, L.H. Germer: Diffraction of electrons by a crystal of nickel, Phys. Rev. 30, 705–740 (1927)

    CAS  Google Scholar 

  • E.J. Scheibner, L.H. Germer, C.D. Hartman: Apparatus for direct observation of low-energy electron diffraction patterns, Rev. Sci. Instrum. 31, 112 (1960)

    CAS  Google Scholar 

  • W. Ehrenberg: A new method of investigating the diffraction of slow electrons by crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 18(122), 878 (1934)

    CAS  Google Scholar 

  • G.P. Thomson, A. Reid: Diffraction of cathode rays by a thin film, Nature 119, 890 (1927)

    Google Scholar 

  • E. Ruska: The development of the electron microscope and of electron microscopy, Nobel Prize Lecture (1986)

    Google Scholar 

  • J.M. McLaren, J.B. Pendry, P.J. Rous, D.K. Saldin, G.A. Somorjai, M.A. van Hove, D.D. Vvedensky: Surface Crystallographic Information Service—A Handbook of Surface Structures (Springer, Dordrecht 1987)

    Google Scholar 

  • A.K. Schmid, W. Święch, C.S. Rastomjee, B. Rausenberger, W. Engel, E. Zeitler, A.M. Bradshaw: The chemistry of reaction-diffusion fronts investigated by microscopic LEED I–V fingerprinting, Surf. Sci. 331–333, 225–230 (1995)

    Google Scholar 

  • M. Li, J.B. Hannon, R.M. Tromp, J. Sun, J. Li, V. Shenoy, E. Chason: Equilibrium shapes of graphene domains on Ni(111), Phys. Rev. B 88, 041402(R) (2013)

    Google Scholar 

  • D. Jariwala, T.J. Marks, M.C. Hersam: Mixed-dimensional van der Waals heterostructures, Nature Mater. 16, 170–181 (2017)

    CAS  Google Scholar 

  • H. Hibino, H. Kageshima, F. Maeda, M. Nagase, K. Kobayashi, Y. Kobayashi, H. Yamaguchi: Microscopic thickness determination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons, E-J. Surf. Sci. Nanotech. 6, 107–110 (2008)

    CAS  Google Scholar 

  • R.M. Feenstra, M. Widom: Low-energy electron reflectivity from graphene: first-principles computations and approximate models, Ultramicroscopy 130, 101–108 (2013)

    CAS  Google Scholar 

  • P.C. Mende, Q. Gao, A. Ismach, H. Chou, M. Widom, R. Ruoff, L. Colombo, R.M. Feenstra: Characterization of hexagonal boron nitride layers on nickel surfaces by low-energy electron microscopy, Surf. Sci. 659, 31–42 (2017)

    CAS  Google Scholar 

  • S.C. de la Barrera, Y.-C. Lin, S.M. Eicheld, J.A. Robinson, Q. Gao, M. Widom, R.M. Feenstra: Thickness characterization of atomically thin WSe2 on epitaxial graphene by low-energy electron reflectivity oscillations, J. Vac. Sci. Technol. B 34, 04J106 (2016)

    Google Scholar 

  • M.S. Altman, W.F. Chung, Z.Q. He, H.C. Poon, S.Y. Tong: Quantum size effect in low energy electron diffraction of thin films, Appl. Surf. Sci. 169–170, 82–87 (2001)

    Google Scholar 

  • W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J.T. Sadowski, A. Al-Mahboob, A.M. van der Zande, D.A. Chenet, J.I. Dadap, I.P. Herman, P. Sutter, J. Hone, R.M. Osgood Jr.: Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111, 106801 (2013)

    Google Scholar 

  • M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schönhense, S. Schmidt, F. Forster, F. Reinert, B. Krömker: Nanoelectron spectroscopy for chemical analysis, a novel energy filter for imaging x-ray photoemission microscopy, J. Phys. Condens. Matter 17, S1329–S1338 (2005)

    CAS  Google Scholar 

  • R.M. Tromp, Y. Fujikawa, J.B. Hannon, A.W. Ellis, A. Berghaus, O. Schaff: A simple energy filter for low energy electron microscopy/photoelectron emission microscopy, J. Phys. Condens. Matter 21, 314007 (2009)

    CAS  Google Scholar 

  • F.J. Himpsel, T. Fauster: Probing valence states with photoemission and inverse photoemission, J. Vac. Sci. Technol. A 2, 815–821 (1984)

    CAS  Google Scholar 

  • G. Denninger, V. Dose, H.P. Bonzel: Evidence for direct optical interband transitions in isochromat spectra from Pt single-crystal surfaces, Phys. Rev. Lett. 48, 279–282 (1982)

    CAS  Google Scholar 

  • D.W. Jepsen, P.M. Marcus, F. Jona: Low-energy-electron-diffraction spectra from [001] surfaces of face-centered cubic metals: theory and experiment, Phys. Rev. B 5, 3933–3952 (1972)

    Google Scholar 

  • P.J. Møller, M.H. Mohamed: Total current spectroscopy, Vacuum 35, 29–37 (1985)

    Google Scholar 

  • E.E. Krasovskii, W. Schattke, V.N. Strocov, R. Claessen: Unoccupied band structure of NbSe2 by very low-energy electron diffraction: Experiment and theory, Phys. Rev. B 66, 235403 (2002)

    Google Scholar 

  • T.O. Mentes, A. Locatelli: Angle-resolved X-ray photoemission electron microscopy, J. Electron Spectrosc. Relat. Phenom. 185, 323–329 (2012)

    CAS  Google Scholar 

  • O. Klemperer, W.D. Right: The investigation of electron lenses, Proc. Phys. Soc. 51, 296–317 (1939)

    Google Scholar 

  • P. Muralt, D.W. Pohl: Scanning tunneling potentiometry, Appl. Phys. Lett. 48, 514–516 (1986)

    CAS  Google Scholar 

  • A. Bannani, C. Bobisch, R. Möller: Local potentiometry using a multiprobe scanning tunneling microscope, Rev. Sci. Instrum. 79, 083704 (2008)

    CAS  Google Scholar 

  • S.-H. Ji, J.B. Hannon, R.M. Tromp, V. Perebeinos, J. Tersoff, F.M. Ross: Atomic-scale transport in epitaxial graphene, Nature Mater. 11, 114–119 (2012)

    CAS  Google Scholar 

  • A.L.F. Cauduro, R. dos Reis, G. Chen, A.K. Schmid, H.-G. Rubahn, M. Madsen: Work function mapping of MoOx thin-films for application in electronic devices, Ultramicroscopy 183, 99–103 (2017)

    CAS  Google Scholar 

  • J. Jobst, L.M. Boers, C. Yin, J. Aarts, R.M. Tromp, S.J. van der Molen: Quantifying work function differences using low-energy electron microscopy: The case of mixed-terminated strontium titanate, Ultramicroscopy 200, 43–49 (2019)

    CAS  Google Scholar 

  • C. Klein, T. Nabbefeld, H. Hattab, D. Meyer, M. Kammler, F.-J. Meyer zu Heringdorf, A. Golla-Franz, B.H. Müller, T. Schmidt, M. Henzler, M. Horn-von Hoegen: Lost in reciprocal space? Determination of the scattering condition in spot profile analysis low-energy electron diffraction, Rev. Sci. Instrum. 82, 035111 (2011)

    CAS  Google Scholar 

  • H. Ibach, D.L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, London 1982)

    Google Scholar 

  • K.P. Weidkamp, R.M. Tromp, R.J. Hamers: Epitaxial growth of large pentacene crystals on Si(001) surfaces functionalized with molecular monolayers, J. Phys. Chem. C 111, 16489–16497 (2007)

    CAS  Google Scholar 

  • R.M. Tromp, M.C. Reuter: Wavy steps on Si(001), Phys. Rev. Lett. 68, 820–822 (1992)

    CAS  Google Scholar 

  • R.S. Becker, G.S. Higashi, Y.J. Chabal, A.J. Becker: Atomic-scale conversion of clean Si(111):H-1×1 to Si(111)-2×1 by electron-stimulated desorption, Phys. Rev. Lett. 65, 1917–1920 (1990)

    CAS  Google Scholar 

  • R.D. Ramsier, J.T. Yates Jr.: Electron-stimulated desorption: Principles and applications, Surf. Sci. Rep. 12, 243–378 (1991)

    CAS  Google Scholar 

  • V. Bakshi (Ed.): EUV Lithography (SPIE, Bellingham 2009)

    Google Scholar 

  • M. Pope, C.E. Swemberg: Electronic Processes in Organic Crystal and Polymers (Oxford Univ. Press, Oxford 1998)

    Google Scholar 

  • Y. Lin, D.C. Joy: A new examination of secondary electron yield data, Surf. Interface Anal. 37, 895–900 (2005)

    CAS  Google Scholar 

  • M.P. Seah, W.A. Dench: Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surf. Interface Anal. 1, 2–11 (1979)

    CAS  Google Scholar 

  • H.W. Fink, H. Schmid, H.J. Kreuzer, A. Wierzbicki: Atomic resolution in lensless low-energy electron holography, Phys. Rev. Lett. 67, 1543 (1991)

    CAS  Google Scholar 

  • J.C.H. Spence, W. Qian, A.J. Melmed: Experimental low-voltage point-projection microscopy and its possibilities, Ultramicroscopy 52, 473–477 (1993)

    CAS  Google Scholar 

  • H. Hibino, H. Kageshima, F.-Z. Guo, F. Maeda, M. Kotsugi, Y. Watanabe: Two-dimensional emission patterns of secondary electrons from graphene layers formed on SiC(0001), Appl. Surf. Sci. 254, 7596 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Jim Hannon, Michael Altman, Sense Jan van der Molen, Jan Aarts, Alexander van der Torren, Johannes Jobst, Daniel Geelen, and Eugene Krasovskii for their generous support and assistance in putting this chapter together. Thanks are also due to Ernst Bauer for numerous discussions and inspiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Tromp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tromp, R. (2019). Spectroscopy with the Low Energy Electron Microscope. In: Hawkes, P.W., Spence, J.C.H. (eds) Springer Handbook of Microscopy. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-00069-1_11

Download citation

Publish with us

Policies and ethics