Advertisement

An Analytics Tool for Exploring Scientific Software and Related Publications

  • Anett HoppeEmail author
  • Jascha Hagen
  • Helge Holzmann
  • Günter Kniesel
  • Ralph Ewerth
Conference paper
  • 1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11057)

Abstract

Scientific software is one of the key elements for reproducible research. However, classic publications and related scientific software are typically not (sufficiently) linked, and tools are missing to jointly explore these artefacts. In this paper, we report on our work on developing the analytics tool SciSoftX (https://labs.tib.eu/info/projekt/scisoftx/) for jointly exploring software and publications. The presented prototype, a concept for automatic code discovery, and two use cases demonstrate the feasibility and usefulness of the proposal.

Keywords

Software reproducibility Source code exploration Cross-modal relations 

References

  1. 1.
    Atzeni, M., Atzori, M.: Codeontology: RDF-ization of source code. In: d’Amato, C. (ed.) ISWC 2017. LNCS, vol. 10588, pp. 20–28. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68204-4_2CrossRefGoogle Scholar
  2. 2.
    Baker, M.: 1,500 scientists lift the lid on reproducibility. Nat. News 533(7604), 452 (2016)CrossRefGoogle Scholar
  3. 3.
    Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of information retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565–1616 (2014).  https://doi.org/10.1007/s10664-013-9255-yCrossRefGoogle Scholar
  4. 4.
    Chen, X., Hosking, J.G., Grundy, J.: Visualizing traceability links between source code and documentation. In: IEEE Symposium on Visual Languages and Human-Centric Computing, Innsbruck, Austria, pp. 119–126 (2012).  https://doi.org/10.1109/VLHCC.2012.6344496
  5. 5.
    Constantin, A.: Automatic structure and keyphrase analysis of scientific publications. Ph.D. thesis, University of Manchester, UK (2014). http://www.manchester.ac.uk/escholar/uk-ac-man-scw:230124
  6. 6.
    Holzmann, H., Sperber, W., Runnwerth, M.: Archiving software surrogates on the web for future reference. In: Fuhr, N., Kovács, L., Risse, T., Nejdl, W. (eds.) TPDL 2016. LNCS, vol. 9819, pp. 215–226. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-43997-6_17CrossRefGoogle Scholar
  7. 7.
    Moser, M., Pichler, J.: Documentation generation from annotated source code of scientific software: position paper. In: Proceedings of the International Workshop on Software Engineering for Science, SE4Science@ICSE 2016, 14 May 2016–22 May 2016, Austin, Texas, USA, pp. 12–15. ACM (2016).  https://doi.org/10.1145/2897676.2897679
  8. 8.
    Nazar, N., Hu, Y., Jiang, H.: Summarizing software artifacts: a literature review. J. Comput. Sci. Technol. 31(5), 883–909 (2016).  https://doi.org/10.1007/s11390-016-1671-1CrossRefGoogle Scholar
  9. 9.
    Witte, R., Li, Q., Zhang, Y., Rilling, J.: Text mining and software engineering: an integrated source code and document analysis approach. IET Softw. 2(1), 3–16 (2008).  https://doi.org/10.1049/iet-sen:20070110CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Leibniz Information Centre for Science and Technology (TIB)HannoverGermany
  2. 2.Leibniz Universität HannoverHannoverGermany
  3. 3.L3S Research CenterLeibniz Universität HannoverHannoverGermany
  4. 4.University of BonnBonnGermany

Personalised recommendations