Skip to main content

Globalized Newton–Krylov–Schwarz AC Load Flow Methods for Future Power Systems

  • Chapter
  • First Online:
Intelligent Integrated Energy Systems
  • 571 Accesses

Abstract

The load flow equations express the balance of power in an electrical power system. The power generated must equal the power consumed. In the AC time-harmonic case, the load flow equations are non-linear in the voltage phasors associated with the nodes in the network. The development of future power systems urgently requires new, highly efficient and robust load flow solvers. In this contribution we aim at making the following three scientific contributions. We first show that the use of a globalization procedure is required to ensure the convergence of a Newton load flow simulation of a stressed network. Such operational conditions are more likely to occur in the future. We subsequently show that the use of an inexact Newton–Krylov method results in faster computations. We employ Quotient Minimal Degree (QMD) as a matrix reordering method, incomplete LU factorization (ILU) as a preconditioner, Generalized Minimal Residual (GMRES) as a Krylov acceleration, and the Dembo-Steihaus strategy to defined the accuracy of the linear solver at each Newton iteration. We finally show the results of iterative solution algorithms that allow to exploit the decomposition of a network into subnetworks. Decompositions with and without overlapping nodes are tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Arrillaga, C.P. Arnold, Computer Analysis of Power Systems (Wiley, New Jersey, 1990)

    Book  Google Scholar 

  2. R. Idema, D. Lahaye, Computational Methods in Power System Analysis (Atlantis Press, Amsterdam, 2014)

    Book  Google Scholar 

  3. W.H. Kersting, Distribution System Modeling and Analysis, 3rd edn. (Taylor & Francis, Abingdon, 2012)

    MATH  Google Scholar 

  4. P. Schavemaker, L. van der Sluis, Electrical Power System Essentials (Wiley, New Jersey, 2008)

    Google Scholar 

  5. M.H. Bollen, F. Hassan, Integration of Distributed Generation in the Power System, IEEE Press Series on Power Engineering (Wiley, New Jersey, 2011)

    Book  Google Scholar 

  6. N. Hatziargyriou, Microgrids: Architectures and Control (IEEE, Wiley, New Jersey, 2014)

    Google Scholar 

  7. http://www.openelectrical.org/wiki/index.php?title=Power_Systems_Analysis_Software

  8. J. Nocedal, S. Wright, Numerical Optimization (Springer, New York, 2006)

    MATH  Google Scholar 

  9. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia, 2003)

    Book  Google Scholar 

  10. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Web Page (2016), http://www.mcs.anl.gov/petsc

  11. C.E. Murillo-Sánchez, R.D. Zimmerman, C.L. Anderson, R.J. Thomas, Secure planning and operations of systems with stochastic sources, energy storage and active demand. IEEE Trans. Smart Grid 4(4), 2220–2229 (2013)

    Article  Google Scholar 

  12. A.R. Bergen, V. Vittal, Power Systems Analysis (Pearson/Prentice Hall, New Jersey, 2000)

    Google Scholar 

  13. M. de Jong, G. Papaeffhymiou, D. Lahaye, C. Vuik, L. van der Sluis, Impact of correlated infeeds on risk-based power system security assessment, in Power Systems Computation Conference (PSCC) (Wroclaw, Poland, 2014). https://doi.org/10.1109/PSCC.2014.7038439

  14. P.J. Lagacé, M.H. Vuong and I. Kamwa, Improving power flow convergence by Newton Raphson with a Levenberg-Marquardt method, in IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (2008), pp. 1–6

    Google Scholar 

  15. M. De Beurs, P. De Graaf, P. Hansler, S. Hermans, K. Van Walstijn, J. De Winter, D.J.P. Lahaye, Optimal configuration of the future electricity grid. DIAM TU Delft Technical Report 16-01 (2016)

    Google Scholar 

  16. R. Idema, G. Papaefthymiou, D. Lahaye, C. Vuik, L. van der Sluis, Towards faster solution of large power flow problems. IEEE Trans. Power Syst. 28(4), 4918–4925 (2013)

    Article  Google Scholar 

  17. S. Abhyankar, B.F. Smith, PETSc: an advanced math and computing framework for rapidly developing parallel smart grid applications, in Proceedings of the IEEE PES General Meeting (2013)

    Google Scholar 

  18. J. Aviles Cedeño, A three-phase unbalanced load flow solver for large-scale distribution power systems. TU Delft Master thesis (2017). (uuid:0d750fa1-b349-4459-8ba7-5f2a3bbf0c87)

    Google Scholar 

  19. A. Toselli, O. Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational Mathematics (Springer, Berlin, 2004)

    MATH  Google Scholar 

  20. B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  21. S. Guido Rimaldo, A. Ceresoli, Newton-Krylov-Schwarz methods for distributed load flow and related applications. Master thesis report, School of Industrial and Information Engineering, Politecnico di Milano (2018)

    Google Scholar 

Download references

Acknowledgements

The results on the globalization of the Newton method using the fsolve function in Matlab resulted from a fruitful collaboration with VVTP Applied Physics student association. Results from the Newton–Krylov method using pflow implemented in PETSc resulted from the master thesis project of Jonathan Aviles. Results from the Newton–Krylov–Schwarz using again pflow resulted from the master thesis project of the students Andrea Ceresoli and Stefano Guido Rinaldo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Lahaye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lahaye, D., Vuik, K. (2019). Globalized Newton–Krylov–Schwarz AC Load Flow Methods for Future Power Systems. In: Palensky, P., Cvetković, M., Keviczky, T. (eds) Intelligent Integrated Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-00057-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00057-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00056-1

  • Online ISBN: 978-3-030-00057-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics