Skip to main content

Neurological Complications

  • Chapter
  • First Online:
Fetal Growth Restriction

Abstract

Fetal growth restriction (FGR) is one of the major determinants of perinatal mortality and morbidity in singleton pregnancies. Placental insufficiency represents the most common cause of FGR and affects about 5–10% of all gestations. Chronic placental insufficiency commonly leads to progressive fetal hypoxemia resulting in a peculiar modification of fetal hemodynamic and metabolism which is responsible of the high burden of neurological disabilities observed in children affected by FGR, such as motor, cognitive, and developmental delay. In the last decade, ultrasound and especially fetal magnetic resonance imaging (MRI) have been shown to provide useful information on brain structure, hemodynamics, and metabolism in fetuses affected by FGR, thus highlighting the need for a thorough assessment of the neurodevelopmental performance of children affected by growth restriction in utero. Despite this, prediction of neurodevelopmental outcome in fetuses affected by FGR is challenging; small sample size of previously published studies, retrospective design, inclusion of cases affected by different types of growth anomalies and heterogeneity in neurodevelopmental tools adopted, gestational age at birth, and time at follow-up make difficult to extrapolate a robust evidence on the actual risk of abnormal neurodevelopmental outcome in children affected by FGR. The aim of this chapter will be to provide an up-to-date overview on the neurological complications and developmental disabilities occurring in children affected by FGR due to placental insufficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Figueras F, Gratacos E. An integrated approach to fetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2017;38:48–48.

    Article  Google Scholar 

  2. Tolsa CB, Zimine S, Warfield SK, Freschi M, Sancho Rossignol A, Lazeyras F, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction. Pediatr Res. 2004;56:132–8.

    Article  Google Scholar 

  3. Meher S, Hernandez-Andrade E, Basheer SN, Lees C. Impact of cerebral redistribution on neurodevelopmental outcome in small-for-gestational-age or growth-restricted babies: a systematic review. Ultrasound Obstet Gynecol. 2015;46:398–404.

    Article  CAS  Google Scholar 

  4. Sanz-Cortes M, Simoes RV, Bargallo N, Masoller N, Figueras F, Gratacos E. Proton magnetic resonance spectroscopy assessment of fetal brain metabolism in late-onset ‘small for gestational age’ versus ‘intrauterine growth restriction’ fetuses. Fetal Diagn Ther. 2015;37:108–16.

    Article  Google Scholar 

  5. Crispi F, Miranda J, Gratacós E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018;218:S869–79.

    Article  Google Scholar 

  6. Gómez O, Figueras F, Martínez JM, del Río M, Palacio M, Eixarch E, et al. Sequential changes in uterine artery blood flow pattern between the first and second trimesters of gestation in relation to pregnancy outcome. Ultrasound Obstet Gynecol. 2006;28:802–8.

    Article  Google Scholar 

  7. Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed. 2007;92:F62–7.

    Article  CAS  Google Scholar 

  8. Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48:333–9.

    Article  CAS  Google Scholar 

  9. Baschat AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol. 2011;37:501–14.

    Article  CAS  Google Scholar 

  10. Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36:136–42.

    Article  Google Scholar 

  11. Harel S, Tomer A, Barak Y, Binderman I, Yavin E. The cephalization index: a screening device for brain maturity and vulnerability in normal and intrauterine growth retarded newborns. Brain and Development. 1985;7:580–4.

    Article  CAS  Google Scholar 

  12. Padilla N, Perapoch J, Carrascosa A, Acosta-Rojas R, Botet F, Gratacós E. Twelve-month neurodevelopmental outcome in preterm infants with and without intrauterine growth restriction. Acta Paediatr. 2010;99:1498–503.

    Article  Google Scholar 

  13. Harvey D, Prince J, Bunton J, Parkinson C, Campbell S. Abilities of children who were small-for-gestational-age babies. Pediatrics. 1982;69:296–300.

    CAS  PubMed  Google Scholar 

  14. Lodygensky GA, Seghier ML, Warfield SK, Tolsa CB, Sizonenko S, Lazeyras F, et al. Intrauterine growth restriction affects the preterm infant’s hippocampus. Pediatr Res. 2008;63:438–43.

    Article  Google Scholar 

  15. Padilla N, Falcón C, Sanz-Cortés M, Figueras F, Bargallo N, Crispi F, et al. Differential effects of intrauterine growth restriction on brain structure and development in preterm infants: a magnetic resonance imaging study. Brain Res. 2011;1382:98–108.

    Article  CAS  Google Scholar 

  16. Padilla N, Junqué C, Figueras F, Sanz-Cortes M, Bargalló N, Arranz A, et al. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age. Brain Res. 2014;1545:1–11.

    Article  CAS  Google Scholar 

  17. Ramenghi LA, Martinelli A, De Carli A, Brusati V, Mandia L, Fumagalli M, et al. Cerebral maturation in IUGR and appropriate for gestational age preterm babies. Reprod Sci. 2011;18:469–75.

    Article  Google Scholar 

  18. Hernandez-Andrade E, Figueroa-Diesel H, Jansson T, Rangel-Nava H, Gratacos E. Changes in regional fetal cerebral blood flow perfusion in relation to hemodynamic deterioration in severely growth-restricted fetuses. Ultrasound Obstet Gynecol. 2008;32:71–6.

    Article  CAS  Google Scholar 

  19. Batalle D, Eixarch E, Figueras F, Muñoz-Moreno E, Bargallo N, Illa M, et al. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. NeuroImage. 2012;60:1352–66.

    Article  Google Scholar 

  20. Fischi-Gómez E, Vasung L, Meskaldji DE, Lazeyras F, Borradori-Tolsa C, Hagmann P, et al. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex. 2015;25:2793–805.

    Article  Google Scholar 

  21. GRIT Study Group. A randomised trial of timed delivery for the compromised preterm fetus: short term outcomes and Bayesian interpretation. BJOG. 2003;110:27–32.

    Article  Google Scholar 

  22. Lees CC, Marlow N, van Wassenaer-Leemhuis A, Arabin B, Bilardo CM, Brezinka C, et al. 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet. 2015;385:2162–72.

    Article  Google Scholar 

  23. Vossbeck S, de Camargo OK, Grab D, Bode H, Pohlandt F. Neonatal and neurodevelopmental outcome in infants born before 30 weeks of gestation with absent or reversed end-diastolic flow velocities in the umbilical artery. Eur J Pediatr. 2001;160:128–34.

    Article  Google Scholar 

  24. Baschat AA, Viscardi RM, Hussey-Gardner B, Hashmi N, Harman C. Infant neurodevelopment following fetal growth restriction: relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol. 2009;33:44–50.

    Article  CAS  Google Scholar 

  25. Valcamonico A, Accorsi P, Battaglia S, Soregaroli M, Beretta D, Frusca T. Absent or reverse end-diastolic flow in the umbilical artery: intellectual development at school age. Eur J Obstet Gynecol Reprod Biol. 2004;114:23–8.

    Article  Google Scholar 

  26. Brodszki J, Morsing E, Malcus P, Thuring A, Ley D, Marsál K. Early intervention in management of very preterm growth-restricted fetuses: 2-year outcome of infants delivered on fetal indication before 30 gestational weeks. Ultrasound Obstet Gynecol. 2009;34:288–96.

    Article  CAS  Google Scholar 

  27. Shand AW, Hornbuckle J, Nathan E, Dickinson JE, French NP. Small for gestational age preterm infants and relationship of abnormal umbilical artery Doppler blood flow to perinatal mortality and neurodevelopmental outcomes. Aust N Z J Obstet Gynaecol. 2009;49:52–8.

    Article  Google Scholar 

  28. Schreuder AM, McDonnell M, Gaffney G, Johnson A, Hope PL. Outcome at school age following antenatal detection of absent or reversed end diastolic flow velocity in the umbilical artery. Arch Dis Child Fetal Neonatal Ed. 2002;86:F108–14.

    Article  CAS  Google Scholar 

  29. Scherjon SA, Oosting H, Smolders-DeHaas H, Zondervan HA, Kok JH. Neurodevelopmental outcome at three years of age after fetal ‘brain-sparing’. Early Hum Dev. 1998;52:67–79.

    Article  CAS  Google Scholar 

  30. Scherjon S, Briet J, Oosting H, Kok J. The discrepancy between maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics. 2000;105:385–91.

    Article  CAS  Google Scholar 

  31. Stampalija T, Arabin B, Wolf H, Bilardo CM, Lees C. TRUFFLE investigators. Is middle cerebral artery Doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am J Obstet Gynecol. 2017;216:521.e1–521.e13.

    Article  Google Scholar 

  32. Leppanen M, Ekholm E, Palo P, Maunu J, Munck P, Parkkola R, et al. Abnormal antenatal Doppler velocimetry and cognitive outcome in very-low birth weight infants at 2 years of age. Ultrasound Obstet Gynecol. 2010;36:178–85.

    Article  CAS  Google Scholar 

  33. Torrance HL, Bloemen MC, Mulder EJ, Nikkels PG, Derks JB, de Vries LS, et al. Predictors of outcome at 2 years of age after early intrauterine growth restriction. Ultrasound Obstet Gynecol. 2010;36:171–7.

    Article  CAS  Google Scholar 

  34. Arcangeli T, Thilaganathan B, Hooper R, Khan KS, Bhide A. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol. 2012;40:267–75.

    Article  CAS  Google Scholar 

  35. Eixarch E, Meler E, Iraola A, Illa M, Crispi F, Hernandez-Andrade E, et al. Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet Gynecol. 2008;32:894–9.

    Article  CAS  Google Scholar 

  36. Wienerroither H, Steiner H, Tomaselli J, Lobendanz M, Thun-Hohenstein L. Intrauterine blood flow and long-term intellectual, neurologic, and social development. Obstet Gynecol. 2001;97:449–53.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco D’Antonio .

Editor information

Editors and Affiliations

Appendix

Appendix

Summary of the main abnormal neurodevelopmental measures observed in infants affected by early fetal growth restriction in utero .

  • Lower scores on cognitive testing

  • Difficulties in schools or require special education

  • Gross motor and minor neurologic dysfunction

  • Behavioral problems (attention deficit hyperactivity syndrome)

  • Growth failure

  • Lower strength and work capacity

  • Cerebral palsy

  • Low social competence

  • Poor academic performance

  • Lower levels of intelligence

  • Hyperactive behavior

  • Poor perceptual performance

  • Poor visuomotor perception, motor incompetence, reading, and mathematics learning

Structural Anomalies

  • Reduced head circumference

  • Reduced total and gray matter volume

  • Reduced hippocampal and cerebellar volume

  • Reduced total number of cells

  • Reduced myelin content

  • Thinning cortex

  • Delayed myelination

  • Reduced connectivity

Motor Anomalies

  • Reduced gross and fine motor skills

  • Reduced visuomotor skills

  • Clumsiness

  • Cerebral palsy

Cognitive and Learning Anomalies

  • Reduced IQ/ executive function

  • Reduced verbal IQ

  • Poor memory

  • Reduced IQ/executive function

  • Reduced verbal IQ

  • Poor memory

Behavioral Anomalies

  • Attention and interaction

  • Hyperactivity

  • Mood and irritability

  • Anxiety

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buca, D., Liberati, M., D’Antonio, F. (2019). Neurological Complications. In: Nardozza, L., Araujo Júnior, E., Rizzo, G., Deter, R. (eds) Fetal Growth Restriction. Springer, Cham. https://doi.org/10.1007/978-3-030-00051-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00051-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00050-9

  • Online ISBN: 978-3-030-00051-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics