Abstract
In recent years, state of the art brain imaging techniques like Functional Magnetic Resonance Imaging (fMRI), have raised new challenges to the statistical community, which is asked to provide new frameworks for modeling and data analysis. Here, motivated by resting state fMRI data, which can be seen as a collection of spatially dependent functional observations among brain regions, we propose a parsimonious but flexible representation of their dependence structure leveraging a Bayesian time-dependent latent factor model. Adopting an assumption of separability of the covariance structure in space and time, we are able to substantially reduce the computational cost and, at the same time, provide interpretable results. Theoretical properties of the model along with identifiability conditions are discussed. For model fitting, we propose a mcmc algorithm to enable posterior inference. We illustrate our work through an application to a dataset coming from the enkirs project, discussing the estimated covariance structure and also performing model selection along with network analysis. Our modeling is preliminary but offers ideas for developing fully Bayesian fMRI models, incorporating a plausible space and time dependence structure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Richer modeling might allow heterogeneity in variances, e.g., across regions but we do not consider that here.
References
Biswal, B., Yetkin, F.Z., V.M., H., Hyde, J.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (1995). https://doi.org/10.1002/mrm.1910340409
Lee, M.H., Smyser, C.D., Shimony, J.S.: Resting state fMRI: a review of methods and clinical applications. Am. J. Neuroradiol. 34(10), 1866–1872 (2013). https://doi.org/10.3174/ajnr.A3263
Poldrack, R.A., Mumford, J.A., Nichols, T.E.: Handbook of Functional MRI Data Analysis. Cambridge University Press, Cambridge (2011)
Smitha, K., Akhil Raja, K., Arun, K., Rajesh, P., Thomas, B., Kapilamoorthy, T., Kesavadas, C.: Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 30(4), 305–317 (2017). https://doi.org/10.1177/1971400917697342
Bowman, F.D., Caffo, B., Bassett, S.S., Kilts, C.: A Bayesian hierarchical framework for spatial modeling of fMRI data. NeuroImage 39 (2008). https://doi.org/10.1016/j.neuroimage.2007.08.012
Hartvig, N.G.: A stochastic geometry model for functional magnetic resonance images. Scand. J. Stat. 29(3), 333–353 (2002). https://doi.org/10.1111/1467-9469.00294
Quirós, A., Diez, R.M., Gamerman, D.: Bayesian spatiotemporal model of fMRI data. NeuroImage 49(1), 442–456 (2010). https://doi.org/10.1016/j.neuroimage.2009.07.047
Stephan, K.E., Kasper, L., Harrison, L.M., Daunizeau, J., den Ouden, H.E., Breakspear, M., Friston, K.J.: Nonlinear dynamic causal models for fMRI. NeuroImage 42(2), 649–662 (2008). https://doi.org/10.1016/j.neuroimage.2008.04.262
Zhang, L., Guindani, M., Versace, F., Engelmann, J.M., Vannucci, M.: A spatiotemporal nonparametric Bayesian model of multi-subject fMRI data. Ann. Appl. Stat. 10(2), 638–666 (2016). https://doi.org/10.1214/16-AOAS926
Zhang, L., Guindani, M., Versace, F., Vannucci, M.: A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses. NeuroImage 95, 162–175 (2014). https://doi.org/10.1016/j.neuroimage.2014.03.024
Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M.: Bayesian analysis of neuroimaging data in FSL. NeuroImage 45 (2009). https://doi.org/10.1016/j.neuroimage.2008.10.055
Zhang, L., Guindani, M., Vannucci, M.: Bayesian models for functional magnetic resonance imaging data analysis. Comput. Stat. 7(1), 21–41 (2015). https://doi.org/10.1002/wics.1339. Wiley Interdisciplinary Reviews
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2(4), 189–210 (1994). https://doi.org/10.1002/hbm.460020402
Craddock, R.C., Jbabdi, S., Yan, C., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nat. Methods 6, 524–539 (2013). https://doi.org/10.1038/nmeth.2482
Erhardt, E.B., Allen, E.A., Wei, Y., Eichele, T., Calhoun, V.D.: Simtb, a simulation toolbox for fmri data under a model of spatiotemporal separability. NeuroImage 59(4), 4160–4167 (2012). https://doi.org/10.1016/j.neuroimage.2011.11.088
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.021
Cressie, N., Wikle, C.K.: Statistics for Spatio-Temporal Data. Wiley, New York (2011)
Banerjee, S., Carlin, B.P., Gelfand, A.E.: Hierarchical Modeling and Analysis for Spatial Data, 2nd edn. CRC Press, Boca Raton (2014)
Quick, H., Banerjee, S., Carlin, B.P.: Modeling temporal gradients in regionally aggregated California asthma hospitalization data. Ann. Appl. Stat. 7(1), 154–176 (2013). https://doi.org/10.1214/12-AOAS600
Ramsay, J., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). https://doi.org/10.1038/nrn2575
van den Heuvel, M., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage 43, 528–539 (2008). https://doi.org/10.1016/j.neuroimage.2008.08.010
Alexander-Bloch, A.F., Vértes, P., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., Giedd, J., Bullmore, E.T., Gogtay, N.: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cereb. Cortex 23(1), 127–138 (2013). https://doi.org/10.1093/cercor/bhr388
Salvador, R., Suckling, J., Coleman, M., Pickard, J., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342 (2005). https://doi.org/10.1093/cercor/bhi016
Durante, D., Scarpa, B., Dunson, D.B.: Locally adaptive factor processes for multivariate time series. J. Mach. Learn. Res. 15, 1493–1522 (2014). http://jmlr.org/papers/v15/durante14a.html
Fox, E., Dunson, D.: Bayesian nonparametric covariance regression. J. Mach. Learn. Res. 16, 2501–2542 (2015). http://jmlr.org/papers/v16/fox15a.html
Prado, R., West, M.: Time Series. Modeling, Computation and Inference. CRC Press (2010)
Carvalho, C.M., Chang, J., Lucas, J.E., Nevins, J.R., Wang, Q., West, M.: High-dimensional sparse factor modeling: applications in gene expression genomics. J. Am. Stat. Assoc. 103(484), 1438–1456 (2008). https://doi.org/10.1198/016214508000000869
West, M.: Bayesian factor regression models in the large p, small n paradigm. In: J. Bernardo, M.J. Bayarri, J.O. Berger, A.P. Dawid, D. Heckerman, A.F.M. Smith, M. West (eds.) Bayesian Statistics, vol. 7, pp. 733–742. Oxford University Press (2003)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2006)
Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24, 663–676 (2014). https://doi.org/10.1093/cercor/bhs352
Dawid, A.P.: Some matrix-variate distribution theory: notational considerations and a Bayesian application. Biometrika 68(1), 265–274 (1981). https://doi.org/10.2307/2335827
Papp, T.K.: klin: Linear Equations with Kronecker Structure R package version 2007-02-05 (2012). https://CRAN.R-project.org/package=klin.
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis, 3rd edn. CRC Press (2014)
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van Der Linde, A.: Bayesian measures of model complexity and fit. J. R. Stat. Society. Ser. B: Stat. Methodol.64(4), 583–616 (2002). 10.1111/1467-9868.00353
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Kolaczyk, E.D.: Statistical Analysis of Network Data. Springer, New York (2009). https://doi.org/10.1007/978-0-387-88146-1
Ghosh, J., Dunson, D.B.: Default prior distributions and efficient posterior computation in Bayesian factor analysis. J. Comput. Graph. Stat. 18(2), 306–320 (2009). https://doi.org/10.1198/jcgs.2009.07145
Acknowledgements
We are grateful to Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously pre-processed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html, using the pipelines ndmg and c-pac. The authors are also thankful to the organizers of StartUp Research for coordinating such a stimulating event.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
7 Computational Details
7 Computational Details
In this appendix we describe a simple Metropolis-Hastings for posterior inference. The algorithm is summarized in Algorithm 1. Additionally, we derive the identity in Eq. (15). Because of orthogonality, we have that \(\varvec{U}_{\varvec{T}}\varvec{U}_{\varvec{T}}^\mathsf {T} = I_{T \times T}\) and \(\varvec{U}_{\varvec{A}}\varvec{U}_{\varvec{A}}^\mathsf {T} = I_{L \times L}\) and recall also that the matrices \(\varvec{\varLambda }_{\varvec{T}}\) and \(\varvec{\varLambda }_{\varvec{A}}\) are diagonal, containing the eigenvalues of \(\varvec{\varSigma }_{\varvec{T}}\) and \(\varvec{\varSigma }_{\varvec{A}}\), respectively. Exploiting the spectral decompositions of \(\varvec{\varSigma }_{\varvec{T}}\) and \(\varvec{\varSigma }_{\varvec{A}}\) and the basic properties of the Kronecker product, we get
Then, we can write the identity matrix \(I_{n \times n} = (\varvec{U}_{\varvec{T}} \varvec{U}_{\varvec{T}}^\mathsf {T}) \otimes (\varvec{U}_{\varvec{A}}\varvec{U}_{\varvec{A}}^\mathsf {T}) = (\varvec{U}_{\varvec{T}} \otimes \varvec{U}_{\varvec{A}})(\varvec{U}_{\varvec{T}} \otimes \varvec{U}_{\varvec{A}})^\mathsf {T}\). Rearranging the above equation, we get
from which decomposition of \(\varvec{C}^{-1}\) in Eq. (15) follows directly.
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Caponera, A., Denti, F., Rigon, T., Sottosanti, A., Gelfand, A. (2018). Hierarchical Spatio-Temporal Modeling of Resting State fMRI Data. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-00039-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00038-7
Online ISBN: 978-3-030-00039-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)