Skip to main content

Understanding Dependency Patterns in Structural and Functional Brain Connectivity Through fMRI and DTI Data

  • Conference paper
  • First Online:
Studies in Neural Data Science (START UP RESEARCH 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 257))

Included in the following conference series:

Abstract

Neuroscience and neuroimaging have been providing new challenges for statisticians and quantitative researchers in general. As datasets of increasing complexity and dimension become available, the need for statistical techniques to analyze brain related phenomena becomes prominent. In this paper, we delve into data coming from functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI). The aim is to combine information from both sources in order to learn possible patterns of dependencies among regions of interest (ROIs) of the brain. First, we infer positions of these regions in a latent space, using the observed structural connectivity provided by the DTI data, to understand if physical spatial coordinates suitably reflect how ROIs are effectively interconnected. Secondly, we inspect Granger causality in the fMRI data in order to capture patterns of activations between ROIs. Then, we compare results from the analysis on these datasets, to find a link between functional and structural connectivity. Preliminary findings show that latent space positions well reflect hemisphere separation of the brain but are not perfectly connected to all the other structural partitions (that is, lobe, cortex, etc.); furthermore, activations of ROIs inferred from fMRI data are tied to observed structural connections derived from DTI scans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Handedness is the dominance of one hand over the other, or the unequal distribution of fine motor skills between the left and right hands.

  2. 2.

    Procrustes correlation, \(\rho (S_1,S_2)\), is a measure of similarity among two spaces, \(S_1, S_2\). In particular, it measures up to which degree space \(S_2\) was generated by a transformation (rotation, translation or scaling) of space \(S_1\). It is bounded in [0, 1].

References

  1. Allman, J.M., Hakeem, A., Erwin, J.M., Nimchinsky, E., Hof, P.: The anterior cingulate cortex. Ann. N. Y. Acad. Sci. 935(1), 107–117 (2001)

    Article  Google Scholar 

  2. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  3. Cersosimo, M.G., Benarroch, E.E.: Chapter 5—central control of autonomic function and involvement in neurodegenerative disorders. Handbook Clin. Neurol. 117, 45–57 (2013)

    Google Scholar 

  4. Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)

    Article  Google Scholar 

  5. Crockford, D.N., Goodyear, B., Edwards, J., Quickfall, J., el Guebaly, N.: Cue-induced brain activity in pathological gamblers. Biological Psychiatry 58(10), 787–795 (2005)

    Article  Google Scholar 

  6. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)

    Article  Google Scholar 

  7. Durante, D., Dunson, D.B.: Bayesian inference and testing of group differences in brain networks. Bayesian Anal. 13, 29–58 (2018)

    Article  MathSciNet  Google Scholar 

  8. Durante, D., Dunson, D.B., Vogelstein, J.T.: Nonparametric bayes modeling of populations of networks. J. Am. Statist. Assoc. 112(520), 1516–1530 (2017)

    Article  MathSciNet  Google Scholar 

  9. Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soci., 424–438 (1969)

    Article  Google Scholar 

  10. Granger, C.W.: Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 2, 329–352 (1980)

    Article  MathSciNet  Google Scholar 

  11. Hall, E.C., Raskutti, G., Willett, R.: Inference of high-dimensional autoregressive generalized linear models (2016). arXiv:1605.02693

  12. Han, F., Lu, H., Liu, H.: A direct estimation of high dimensional stationary vector autoregressions. J. Mach. Learn. Res. 16, 3115–3150 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social networks. J. Royal Statist. Soc. Ser. A 170(2), 1–22 (2007)

    MathSciNet  Google Scholar 

  14. Hoff, P.: Bilinear mixed-effects models for dyadic data. J. Am. Statist. Assoc. 100(469), 286–295 (2005)

    Article  MathSciNet  Google Scholar 

  15. Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Statist. Assoc. 97(460), 1090–1098 (2002)

    Article  MathSciNet  Google Scholar 

  16. Krivitsky, P.N., Handcock, M.S.: Fitting position latent cluster models for social networks with latentnet. J. Statist. Softw. 24(5) (2008)

    Google Scholar 

  17. Liu, Y., Niculescu-Mizil, A., Lozano, A.C., Lu, Y.: Learning temporal causal graphs for relational time-series analysis. In: Proceedings of the 27th International Conference on Machine Learning (ICML2010), pp. 687–694 (2010)

    Google Scholar 

  18. Ma, L., Hasan, K.M., Steinberg, J.L., Narayana, P.A., Lane, S.D., Zuniga, E.A., Kramer, L.A., Moeller, F.G.: Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend. 104(3), 262–267 (2009)

    Article  Google Scholar 

  19. Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., Jansen, A., Hamer, H., Oertel, W., Rosenow, F., Knake, S.: Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4), 2557–2562 (2011)

    Article  Google Scholar 

  20. Monnig, M.A., Caprihan, A., Yeo, R.A., Gasparovic, C., Ruhl, D.A., Lysne, P., Bogenschutz, M.P., Hutchison, K.E., Thoma, R.J.: Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychol. Addict. Behav. 27(2), 455 (2013)

    Article  Google Scholar 

  21. Nowicki, K., Snijders, T.A.B.: Estimation and prediction of stochastic blockstructures. J. Am. Statist. Assoc. 96(455), 1077–1087 (2001)

    Article  MathSciNet  Google Scholar 

  22. Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., Glymour, C.: Six problems for causal inference from FMRI. Neuroimage 49(2), 1545–1558 (2010)

    Article  Google Scholar 

  23. Rosenbloom, M., Sullivan, E.V., Pfefferbaum, A., et al.: Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Res. Health 27(2), 146–152 (2003)

    Google Scholar 

  24. Shojaie, A., Michailidis, G.: Discovering graphical granger causality using the truncating lasso penalty. Bioinformatics 26(18), i517–i523 (2010)

    Article  Google Scholar 

  25. Simpson, S.L., Bowman, F.D., Laurienti, P.J.: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Statist. Surv. 7, 1 (2013)

    Article  MathSciNet  Google Scholar 

  26. Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  27. Snijders, T.A.B., Nowicki, K.: Estimation and prediction for stochastic bockmodels for graphs with latent block structure. J. Classif. 14(1), 75–100 (1997)

    Article  Google Scholar 

  28. Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In: Advances in neural information processing systems, pp. 1732–1740 (2009)

    Google Scholar 

  29. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247 (2013)

    Google Scholar 

  30. Stam, C.J.: Modern network science of neurological disorders. Nature Rev. Neurosci. 15(10), 683–695 (2014)

    Article  Google Scholar 

  31. Tank, A., Fox, E.B., Shojaie, A.: Granger causality networks for categorical time series (2017). arXiv:1706.02781

  32. Xue, G., Lu, Z., Levin, I.P., Bechara, A.: The impact of prior risk experiences on subsequent risky decision-making: the role of the insula. Neuroimage 50(2), 709–716 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Data were provided by Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously preprocessed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html. We would like to thank Ritabrata Dutta for initial discussions during ‘StartUp Research’ and for comments to the final version of the manuscript. Also, we would like to thank the organizers of ‘StartUp Research’ event, www.congressi.unisi.it/startupresearch/, for creating the opportunity for this research contribution and the other working groups present at the event for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saverio Ranciati .

Editor information

Editors and Affiliations

Appendices

6 A. Desikan Atlas Codes

Code

Left/Right

Code

Left/Right

Region name

1

L

35

R

bank of the superior temporal sulcus

2

L

36

R

caudal anterior cingulate

3

L

37

R

caudal middle frontal gyrus

4

L

38

R

cuneus

5

L

39

R

entorhinal

6

L

40

R

fusiform

7

L

41

R

inferior parietal lobule

8

L

42

R

inferior temporal gyrus

9

L

43

R

isthmus cingulate cortex

10

L

44

R

lateral occipital gyrus

11

L

45

R

lateral orbitofrontal

12

L

46

R

lingual

13

L

47

R

medial orbitofrontal

14

L

48

R

middle temporal gyrus

15

L

49

R

parahippocampal

16

L

50

R

paracentral

17

L

51

R

pars opercularis

18

L

52

R

pars orbitalis

19

L

53

R

pars triangularis

20

L

54

R

pericalcarine

21

L

55

R

postcentral

22

L

56

R

posterior cingulate cortex

23

L

57

R

precentral

24

L

58

R

precuneus

25

L

59

R

rostral anterior cingulate cortex

26

L

60

R

rostral middle frontal gyrus

27

L

61

R

superior frontal gyrus

28

L

62

R

superior parietal lobule

29

L

63

R

superior temporal gyrus

30

L

64

R

supramarginal gyrus

31

L

65

R

frontal pole

32

L

66

R

temporal pole

33

L

67

R

transverse temporal

34

L

68

R

insula

7 B. MCMC Diagnostics of Intercept Parameters of the Latent Space Model

See Fig. 9.

Fig. 9
figure 9

Trace plots and histograms of the posterior distributions of the intercept parameters \(\beta \) in the latent space model, for subjects 8, 9 and 24

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crispino, M., D’Angelo, S., Ranciati, S., Mira, A. (2018). Understanding Dependency Patterns in Structural and Functional Brain Connectivity Through fMRI and DTI Data. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_1

Download citation

Publish with us

Policies and ethics