Abstract
Neuroscience and neuroimaging have been providing new challenges for statisticians and quantitative researchers in general. As datasets of increasing complexity and dimension become available, the need for statistical techniques to analyze brain related phenomena becomes prominent. In this paper, we delve into data coming from functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI). The aim is to combine information from both sources in order to learn possible patterns of dependencies among regions of interest (ROIs) of the brain. First, we infer positions of these regions in a latent space, using the observed structural connectivity provided by the DTI data, to understand if physical spatial coordinates suitably reflect how ROIs are effectively interconnected. Secondly, we inspect Granger causality in the fMRI data in order to capture patterns of activations between ROIs. Then, we compare results from the analysis on these datasets, to find a link between functional and structural connectivity. Preliminary findings show that latent space positions well reflect hemisphere separation of the brain but are not perfectly connected to all the other structural partitions (that is, lobe, cortex, etc.); furthermore, activations of ROIs inferred from fMRI data are tied to observed structural connections derived from DTI scans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Handedness is the dominance of one hand over the other, or the unequal distribution of fine motor skills between the left and right hands.
- 2.
Procrustes correlation, \(\rho (S_1,S_2)\), is a measure of similarity among two spaces, \(S_1, S_2\). In particular, it measures up to which degree space \(S_2\) was generated by a transformation (rotation, translation or scaling) of space \(S_1\). It is bounded in [0, 1].
References
Allman, J.M., Hakeem, A., Erwin, J.M., Nimchinsky, E., Hof, P.: The anterior cingulate cortex. Ann. N. Y. Acad. Sci. 935(1), 107–117 (2001)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10(3), 186–198 (2009)
Cersosimo, M.G., Benarroch, E.E.: Chapter 5—central control of autonomic function and involvement in neurodegenerative disorders. Handbook Clin. Neurol. 117, 45–57 (2013)
Craddock, R.C., Jbabdi, S., Yan, C.G., Vogelstein, J.T., Castellanos, F.X., Di Martino, A., Kelly, C., Heberlein, K., Colcombe, S., Milham, M.P.: Imaging human connectomes at the macroscale. Nature Methods 10(6), 524–539 (2013)
Crockford, D.N., Goodyear, B., Edwards, J., Quickfall, J., el Guebaly, N.: Cue-induced brain activity in pathological gamblers. Biological Psychiatry 58(10), 787–795 (2005)
Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)
Durante, D., Dunson, D.B.: Bayesian inference and testing of group differences in brain networks. Bayesian Anal. 13, 29–58 (2018)
Durante, D., Dunson, D.B., Vogelstein, J.T.: Nonparametric bayes modeling of populations of networks. J. Am. Statist. Assoc. 112(520), 1516–1530 (2017)
Granger, C.W.: Investigating causal relations by econometric models and cross-spectral methods. Econom. J. Econom. Soci., 424–438 (1969)
Granger, C.W.: Testing for causality: a personal viewpoint. J. Econ. Dyn. Control 2, 329–352 (1980)
Hall, E.C., Raskutti, G., Willett, R.: Inference of high-dimensional autoregressive generalized linear models (2016). arXiv:1605.02693
Han, F., Lu, H., Liu, H.: A direct estimation of high dimensional stationary vector autoregressions. J. Mach. Learn. Res. 16, 3115–3150 (2015)
Handcock, M.S., Raftery, A.E., Tantrum, J.M.: Model-based clustering for social networks. J. Royal Statist. Soc. Ser. A 170(2), 1–22 (2007)
Hoff, P.: Bilinear mixed-effects models for dyadic data. J. Am. Statist. Assoc. 100(469), 286–295 (2005)
Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Statist. Assoc. 97(460), 1090–1098 (2002)
Krivitsky, P.N., Handcock, M.S.: Fitting position latent cluster models for social networks with latentnet. J. Statist. Softw. 24(5) (2008)
Liu, Y., Niculescu-Mizil, A., Lozano, A.C., Lu, Y.: Learning temporal causal graphs for relational time-series analysis. In: Proceedings of the 27th International Conference on Machine Learning (ICML2010), pp. 687–694 (2010)
Ma, L., Hasan, K.M., Steinberg, J.L., Narayana, P.A., Lane, S.D., Zuniga, E.A., Kramer, L.A., Moeller, F.G.: Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend. 104(3), 262–267 (2009)
Menzler, K., Belke, M., Wehrmann, E., Krakow, K., Lengler, U., Jansen, A., Hamer, H., Oertel, W., Rosenow, F., Knake, S.: Men and women are different: diffusion tensor imaging reveals sexual dimorphism in the microstructure of the thalamus, corpus callosum and cingulum. Neuroimage 54(4), 2557–2562 (2011)
Monnig, M.A., Caprihan, A., Yeo, R.A., Gasparovic, C., Ruhl, D.A., Lysne, P., Bogenschutz, M.P., Hutchison, K.E., Thoma, R.J.: Diffusion tensor imaging of white matter networks in individuals with current and remitted alcohol use disorders and comorbid conditions. Psychol. Addict. Behav. 27(2), 455 (2013)
Nowicki, K., Snijders, T.A.B.: Estimation and prediction of stochastic blockstructures. J. Am. Statist. Assoc. 96(455), 1077–1087 (2001)
Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., Glymour, C.: Six problems for causal inference from FMRI. Neuroimage 49(2), 1545–1558 (2010)
Rosenbloom, M., Sullivan, E.V., Pfefferbaum, A., et al.: Using magnetic resonance imaging and diffusion tensor imaging to assess brain damage in alcoholics. Alcohol Res. Health 27(2), 146–152 (2003)
Shojaie, A., Michailidis, G.: Discovering graphical granger causality using the truncating lasso penalty. Bioinformatics 26(18), i517–i523 (2010)
Simpson, S.L., Bowman, F.D., Laurienti, P.J.: Analyzing complex functional brain networks: fusing statistics and network science to understand the brain. Statist. Surv. 7, 1 (2013)
Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for fmri. Neuroimage 54(2), 875–891 (2011)
Snijders, T.A.B., Nowicki, K.: Estimation and prediction for stochastic bockmodels for graphs with latent block structure. J. Classif. 14(1), 75–100 (1997)
Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In: Advances in neural information processing systems, pp. 1732–1740 (2009)
Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15(3), 247 (2013)
Stam, C.J.: Modern network science of neurological disorders. Nature Rev. Neurosci. 15(10), 683–695 (2014)
Tank, A., Fox, E.B., Shojaie, A.: Granger causality networks for categorical time series (2017). arXiv:1706.02781
Xue, G., Lu, Z., Levin, I.P., Bechara, A.: The impact of prior risk experiences on subsequent risky decision-making: the role of the insula. Neuroimage 50(2), 709–716 (2010)
Acknowledgements
Data were provided by Greg Kiar and Eric Bridgeford from NeuroData at Johns Hopkins University, who graciously preprocessed the raw DTI and R-fMRI imaging data available at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_1.html. We would like to thank Ritabrata Dutta for initial discussions during ‘StartUp Research’ and for comments to the final version of the manuscript. Also, we would like to thank the organizers of ‘StartUp Research’ event, www.congressi.unisi.it/startupresearch/, for creating the opportunity for this research contribution and the other working groups present at the event for fruitful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
6 A. Desikan Atlas Codes
Code | Left/Right | Code | Left/Right | Region name |
---|---|---|---|---|
1 | L | 35 | R | bank of the superior temporal sulcus |
2 | L | 36 | R | caudal anterior cingulate |
3 | L | 37 | R | caudal middle frontal gyrus |
4 | L | 38 | R | cuneus |
5 | L | 39 | R | entorhinal |
6 | L | 40 | R | fusiform |
7 | L | 41 | R | inferior parietal lobule |
8 | L | 42 | R | inferior temporal gyrus |
9 | L | 43 | R | isthmus cingulate cortex |
10 | L | 44 | R | lateral occipital gyrus |
11 | L | 45 | R | lateral orbitofrontal |
12 | L | 46 | R | lingual |
13 | L | 47 | R | medial orbitofrontal |
14 | L | 48 | R | middle temporal gyrus |
15 | L | 49 | R | parahippocampal |
16 | L | 50 | R | paracentral |
17 | L | 51 | R | pars opercularis |
18 | L | 52 | R | pars orbitalis |
19 | L | 53 | R | pars triangularis |
20 | L | 54 | R | pericalcarine |
21 | L | 55 | R | postcentral |
22 | L | 56 | R | posterior cingulate cortex |
23 | L | 57 | R | precentral |
24 | L | 58 | R | precuneus |
25 | L | 59 | R | rostral anterior cingulate cortex |
26 | L | 60 | R | rostral middle frontal gyrus |
27 | L | 61 | R | superior frontal gyrus |
28 | L | 62 | R | superior parietal lobule |
29 | L | 63 | R | superior temporal gyrus |
30 | L | 64 | R | supramarginal gyrus |
31 | L | 65 | R | frontal pole |
32 | L | 66 | R | temporal pole |
33 | L | 67 | R | transverse temporal |
34 | L | 68 | R | insula |
7 B. MCMC Diagnostics of Intercept Parameters of the Latent Space Model
See Fig. 9.
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Crispino, M., D’Angelo, S., Ranciati, S., Mira, A. (2018). Understanding Dependency Patterns in Structural and Functional Brain Connectivity Through fMRI and DTI Data. In: Canale, A., Durante, D., Paci, L., Scarpa, B. (eds) Studies in Neural Data Science. START UP RESEARCH 2017. Springer Proceedings in Mathematics & Statistics, vol 257. Springer, Cham. https://doi.org/10.1007/978-3-030-00039-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-00039-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00038-7
Online ISBN: 978-3-030-00039-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)