Skip to main content

Optimizing Tile Set Size While Preserving Proofreading with a DNA Self-assembly Compiler

  • Conference paper
  • First Online:
Book cover DNA Computing and Molecular Programming (DNA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11145))

Included in the following conference series:

Abstract

Algorithmic DNA tile systems have the potential to allow the construction by self-assembly of large structures with complex nanometer-scale details out of relatively few monomer types, but are constrained by errors in growth and the limited sequence space of orthogonal DNA sticky ends that program tile interactions. We present a tile set optimization technique that, through analysis of algorithmic growth equivalence, potentially sensitive error pathways, and potential lattice defects, can significantly reduce the size of tile systems while preserving proofreading behavior that is essential for obtaining low error rates. Applied to systems implementing multiple algorithms that are far beyond the size of currently feasible implementations, the optimization technique results in systems that are comparable in size to already-implemented experimental systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhambra. https://github.com/DNA-and-Natural-Algorithms-Group/alhambra

  2. Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. PNAS 106(15), 6054–6059 (2009). https://doi.org/10.1073/pnas.0808736106

    Article  Google Scholar 

  3. Cannon, S., et al.: Two hands are better than one (up to constant factors): self-assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke, T. (eds.) STACS 2013. LIPIcs, vol. 20, pp. 172–184. Dagstuhl (2013). https://doi.org/10.4230/LIPIcs.STACS.2013.172

  4. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11493785_6

    Chapter  Google Scholar 

  5. Chen, H.L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Lett. 7, 2913–2919 (2007). https://doi.org/10.1021/nl070793o

    Article  Google Scholar 

  6. Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2018). https://doi.org/10.1016/j.tcs.2013.05.009

    Article  MathSciNet  MATH  Google Scholar 

  7. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012). https://doi.org/10.1145/2380656.2380675

    Article  Google Scholar 

  8. Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theor. Comput. Sci. 412(1–2), 145–158 (2011). https://doi.org/10.1016/j.tcs.2010.08.023

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology (2014). http://resolver.caltech.edu/CaltechTHESIS:05132014-142306756

  10. Evans, C.G., Winfree, E.: DNA sticky end design and assignment for robust algorithmic self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 61–75. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01928-4_5

    Chapter  MATH  Google Scholar 

  11. Evans, C.G., Winfree, E.: Physical principles for DNA tile self-assembly. Chem. Soc. Rev. 46(12), 3808–3829 (2017). https://doi.org/10.1039/C6CS00745G

    Article  Google Scholar 

  12. Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993). https://doi.org/10.1021/bi00064a003

    Article  Google Scholar 

  13. Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2008). https://doi.org/10.1021/nl0722830

    Article  Google Scholar 

  14. Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets in patterned DNA self-assembly. J. Comput. Syst. Sci. 80(1), 297–319 (2014). https://doi.org/10.1016/j.jcss.2013.08.003

    Article  MathSciNet  MATH  Google Scholar 

  15. Jacobs, W.M., Reinhardt, A., Frenkel, D.: Rational design of self-assembly pathways for complex multicomponent structures. PNAS 112(20), 6313–6318 (2015). https://doi.org/10.1073/pnas.1502210112

    Article  Google Scholar 

  16. Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tileset synthesis. J. Comb. Optim. 33(2), 496–529 (2017). https://doi.org/10.1007/s10878-015-9975-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3_65

    Chapter  Google Scholar 

  18. Johnson, R., Dong, Q., Winfree, E.: Verifying chemical reaction network implementations: a bisimulation approach. Theor. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.01.002

  19. Kari, L., Kopecki, S., Meunier, P.É., Patitz, M.J., Seki, S.: Binary pattern tile set synthesis is NP-hard. Algorithmica 78(1), 1–46 (2017). https://doi.org/10.1007/s00453-016-0154-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comput. 14(2), 279–292 (2015). https://doi.org/10.1007/s11047-014-9434-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012). https://doi.org/10.1126/science.1227268

    Article  Google Scholar 

  22. Lin, C., Liu, Y., Rinker, S., Yan, H.: DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7(8), 1641–1647 (2006). https://doi.org/10.1002/cphc.200600260

    Article  Google Scholar 

  23. Ma, X., Lombardi, F.: Combinatorial optimization problem in designing DNA self-assembly tile sets. In: 2008 IEEE International Workshop on Design and Test of Nano Devices, Circuits and Systems, pp. 73–76 (2008). https://doi.org/10.1109/NDCS.2008.7

  24. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(5), 963–967 (2008). https://doi.org/10.1109/TCAD.2008.917973

    Article  Google Scholar 

  25. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  26. Ong, L.L., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552(7683), 72–77 (2017). https://doi.org/10.1038/nature24648

    Article  Google Scholar 

  27. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005). https://doi.org/10.1007/11493785_26

    Chapter  MATH  Google Scholar 

  28. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. SIAM J. Comput. 39(4), 1581–1616 (2010). https://doi.org/10.1137/070680266

    Article  MathSciNet  MATH  Google Scholar 

  29. Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17), 6405–6410 (2012). https://doi.org/10.1073/pnas.1117813109

    Article  Google Scholar 

  30. Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017). https://doi.org/10.1038/natrevmats.2017.68

    Article  Google Scholar 

  31. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–324. Springer, Heidelberg (2006). https://doi.org/10.1007/11753681_24

    Chapter  Google Scholar 

  32. Wang, W., Lin, T., Zhang, S., Bai, T., Mi, Y., Wei, B.: Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res. 44(16), 7989–7996 (2016). https://doi.org/10.1093/nar/gkw670

    Article  Google Scholar 

  33. Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012). https://doi.org/10.1038/nature11075

    Article  Google Scholar 

  34. Winfree, E.: Simulations of computing by self-assembly. Technical report, CaltechCSTR:1998.22, Pasadena, CA (1998). https://doi.org/10.7907/Z9TB14X7

  35. Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24628-2_13

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Chigozie Nri, Philip Petersen, Lulu Qian, and Grigory Tikhomirov for discussions and collaboration on physical implementations and the Alhambra compiler, and Robert Johnson and William Poole for discussions on aTAM equivalence. This work was partially supported by the Evans Foundation and National Science Foundation award CCF-1317694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine G. Evans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Evans, C.G., Winfree, E. (2018). Optimizing Tile Set Size While Preserving Proofreading with a DNA Self-assembly Compiler. In: Doty, D., Dietz, H. (eds) DNA Computing and Molecular Programming. DNA 2018. Lecture Notes in Computer Science(), vol 11145. Springer, Cham. https://doi.org/10.1007/978-3-030-00030-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-00030-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-00029-5

  • Online ISBN: 978-3-030-00030-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics