Advertisement

Optimizing Tile Set Size While Preserving Proofreading with a DNA Self-assembly Compiler

  • Constantine G. Evans
  • Erik Winfree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11145)

Abstract

Algorithmic DNA tile systems have the potential to allow the construction by self-assembly of large structures with complex nanometer-scale details out of relatively few monomer types, but are constrained by errors in growth and the limited sequence space of orthogonal DNA sticky ends that program tile interactions. We present a tile set optimization technique that, through analysis of algorithmic growth equivalence, potentially sensitive error pathways, and potential lattice defects, can significantly reduce the size of tile systems while preserving proofreading behavior that is essential for obtaining low error rates. Applied to systems implementing multiple algorithms that are far beyond the size of currently feasible implementations, the optimization technique results in systems that are comparable in size to already-implemented experimental systems.

Notes

Acknowledgments

We thank Chigozie Nri, Philip Petersen, Lulu Qian, and Grigory Tikhomirov for discussions and collaboration on physical implementations and the Alhambra compiler, and Robert Johnson and William Poole for discussions on aTAM equivalence. This work was partially supported by the Evans Foundation and National Science Foundation award CCF-1317694.

References

  1. 1.
  2. 2.
    Barish, R.D., Schulman, R., Rothemund, P.W.K., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. PNAS 106(15), 6054–6059 (2009).  https://doi.org/10.1073/pnas.0808736106CrossRefGoogle Scholar
  3. 3.
    Cannon, S., et al.: Two hands are better than one (up to constant factors): self-assembly in the 2HAM vs. aTAM. In: Portier, N., Wilke, T. (eds.) STACS 2013. LIPIcs, vol. 20, pp. 172–184. Dagstuhl (2013).  https://doi.org/10.4230/LIPIcs.STACS.2013.172
  4. 4.
    Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005).  https://doi.org/10.1007/11493785_6CrossRefGoogle Scholar
  5. 5.
    Chen, H.L., Schulman, R., Goel, A., Winfree, E.: Reducing facet nucleation during algorithmic self-assembly. Nano Lett. 7, 2913–2919 (2007).  https://doi.org/10.1021/nl070793oCrossRefGoogle Scholar
  6. 6.
    Czeizler, E., Popa, A.: Synthesizing minimal tile sets for complex patterns in the framework of patterned DNA self-assembly. Theor. Comput. Sci. 499, 23–37 (2018).  https://doi.org/10.1016/j.tcs.2013.05.009MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012).  https://doi.org/10.1145/2380656.2380675CrossRefGoogle Scholar
  8. 8.
    Doty, D., Patitz, M.J., Summers, S.M.: Limitations of self-assembly at temperature 1. Theor. Comput. Sci. 412(1–2), 145–158 (2011).  https://doi.org/10.1016/j.tcs.2010.08.023MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology (2014). http://resolver.caltech.edu/CaltechTHESIS:05132014-142306756
  10. 10.
    Evans, C.G., Winfree, E.: DNA sticky end design and assignment for robust algorithmic self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 61–75. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-01928-4_5CrossRefzbMATHGoogle Scholar
  11. 11.
    Evans, C.G., Winfree, E.: Physical principles for DNA tile self-assembly. Chem. Soc. Rev. 46(12), 3808–3829 (2017).  https://doi.org/10.1039/C6CS00745GCrossRefGoogle Scholar
  12. 12.
    Fu, T.J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).  https://doi.org/10.1021/bi00064a003CrossRefGoogle Scholar
  13. 13.
    Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2008).  https://doi.org/10.1021/nl0722830CrossRefGoogle Scholar
  14. 14.
    Göös, M., Lempiäinen, T., Czeizler, E., Orponen, P.: Search methods for tile sets in patterned DNA self-assembly. J. Comput. Syst. Sci. 80(1), 297–319 (2014).  https://doi.org/10.1016/j.jcss.2013.08.003MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jacobs, W.M., Reinhardt, A., Frenkel, D.: Rational design of self-assembly pathways for complex multicomponent structures. PNAS 112(20), 6313–6318 (2015).  https://doi.org/10.1073/pnas.1502210112CrossRefGoogle Scholar
  16. 16.
    Johnsen, A., Kao, M.Y., Seki, S.: A manually-checkable proof for the NP-hardness of 11-color pattern self-assembly tileset synthesis. J. Comb. Optim. 33(2), 496–529 (2017).  https://doi.org/10.1007/s10878-015-9975-6MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Johnsen, A.C., Kao, M.-Y., Seki, S.: Computing minimum tile sets to self-assemble color patterns. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 699–710. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45030-3_65CrossRefGoogle Scholar
  18. 18.
    Johnson, R., Dong, Q., Winfree, E.: Verifying chemical reaction network implementations: a bisimulation approach. Theor. Comput. Sci. (2018).  https://doi.org/10.1016/j.tcs.2018.01.002
  19. 19.
    Kari, L., Kopecki, S., Meunier, P.É., Patitz, M.J., Seki, S.: Binary pattern tile set synthesis is NP-hard. Algorithmica 78(1), 1–46 (2017).  https://doi.org/10.1007/s00453-016-0154-7MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kari, L., Kopecki, S., Seki, S.: 3-color bounded patterned self-assembly. Nat. Comput. 14(2), 279–292 (2015).  https://doi.org/10.1007/s11047-014-9434-9MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012).  https://doi.org/10.1126/science.1227268CrossRefGoogle Scholar
  22. 22.
    Lin, C., Liu, Y., Rinker, S., Yan, H.: DNA tile based self-assembly: building complex nanoarchitectures. ChemPhysChem 7(8), 1641–1647 (2006).  https://doi.org/10.1002/cphc.200600260CrossRefGoogle Scholar
  23. 23.
    Ma, X., Lombardi, F.: Combinatorial optimization problem in designing DNA self-assembly tile sets. In: 2008 IEEE International Workshop on Design and Test of Nano Devices, Circuits and Systems, pp. 73–76 (2008).  https://doi.org/10.1109/NDCS.2008.7
  24. 24.
    Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(5), 963–967 (2008).  https://doi.org/10.1109/TCAD.2008.917973CrossRefGoogle Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  26. 26.
    Ong, L.L., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552(7683), 72–77 (2017).  https://doi.org/10.1038/nature24648CrossRefGoogle Scholar
  27. 27.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005).  https://doi.org/10.1007/11493785_26CrossRefzbMATHGoogle Scholar
  28. 28.
    Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. SIAM J. Comput. 39(4), 1581–1616 (2010).  https://doi.org/10.1137/070680266MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schulman, R., Yurke, B., Winfree, E.: Robust self-replication of combinatorial information via crystal growth and scission. PNAS 109(17), 6405–6410 (2012).  https://doi.org/10.1073/pnas.1117813109CrossRefGoogle Scholar
  30. 30.
    Seeman, N.C., Sleiman, H.F.: DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).  https://doi.org/10.1038/natrevmats.2017.68CrossRefGoogle Scholar
  31. 31.
    Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–324. Springer, Heidelberg (2006).  https://doi.org/10.1007/11753681_24CrossRefGoogle Scholar
  32. 32.
    Wang, W., Lin, T., Zhang, S., Bai, T., Mi, Y., Wei, B.: Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Res. 44(16), 7989–7996 (2016).  https://doi.org/10.1093/nar/gkw670CrossRefGoogle Scholar
  33. 33.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012).  https://doi.org/10.1038/nature11075CrossRefGoogle Scholar
  34. 34.
    Winfree, E.: Simulations of computing by self-assembly. Technical report, CaltechCSTR:1998.22, Pasadena, CA (1998).  https://doi.org/10.7907/Z9TB14X7
  35. 35.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: error correction for algorithmic self-assembly. In: Chen, J., Reif, J. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24628-2_13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Evans FoundationPasadenaUSA
  2. 2.California Institute of TechnologyPasadenaUSA

Personalised recommendations