Advertisement

Error Tolerant ASCA on FPGA

Conference paper
  • 1.7k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11065)

Abstract

Algebraic Side-Channel Attack (ASCA) is a side-channel attack that models the cryptographic algorithm and side-channel leakage from the system as a set of equations, then solves for the secret key. Unlike pure side-channel attacks, ASCA has low data complexity and can succeed in unknown plaintext/ciphertext scenarios. However, past research on ASCA has been done on either 8-bit microcontroller data or simulated data. In this paper, we explore the application and feasibility of error tolerant ASCA on different platforms, such as field-programmable gate array (FPGA) and examines the error model of Hamming weights in terms of success of the attack. FPGA runs faster and is more difficult for encryption power trace to be isolated so it presents more of a challenge for the attacker. Since FPGA is as susceptible to ASCA as 8-bit micro-controllers, the attack could have widespread implications since it may be applicable to other hardware platforms as well.

Keywords

Algebraic Side-Channel Attack AES Cryptography Block cipher FPGA 

References

  1. 1.
    Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks through digital signal processing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN 2010, pp. 124–133. ACM, New York (2010).  https://doi.org/10.1145/1854099.1854126
  2. 2.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-662-04722-4CrossRefzbMATHGoogle Scholar
  3. 3.
    Fei, H., Daheng, G.: Two kinds of correlation analysis method attack on implementations of advanced encryption standard software running inside STC89C52 microprocessor. In: 2016 2nd IEEE International Conference on Computer and Communications, ICCC, pp. 1265–1269, October 2016Google Scholar
  4. 4.
    Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_12CrossRefGoogle Scholar
  5. 5.
    Jayasinghe, D., Ragel, R., Ambrose, J.A., Ignjatovic, A., Parameswaran, S.: Advanced modes in AES: are they safe from power analysis based side channel attacks? In: 2014 IEEE 32nd International Conference on Computer Design, ICCD, pp. 173–180, October 2014Google Scholar
  6. 6.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25. http://dl.acm.org/citation.cfm?id=646764.703989CrossRefGoogle Scholar
  7. 7.
    Lu, Y., O’Neill, M.P., McCanny, J.V.: FPGA implementation and analysis of random delay insertion countermeasure against DPA. In: 2008 International Conference on Field-Programmable Technology, pp. 201–208, December 2008Google Scholar
  8. 8.
    Luo, C., Fei, Y., Ding, A.A.: Side-channel power analysis of XTS-AES. In: Design, Automation Test in Europe Conference Exhibition, DATE, pp. 1330–1335, March 2017Google Scholar
  9. 9.
    Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In: Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_39CrossRefGoogle Scholar
  10. 10.
    Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann, J.: Improved algebraic side-channel attack on AES. J. Cryptograph. Eng. 3(3), 139–156 (2013).  https://doi.org/10.1007/s13389-013-0059-1CrossRefGoogle Scholar
  11. 11.
    Mpalane, K., Gasela, N., Esiefarienrhe, B.M., Tsague, H.D.: Vulnerability of advanced encryption standard algorithm to differential power analysis attacks implemented on ATmega-128 microcontroller. In: 2016 Third International Conference on Artificial Intelligence and Pattern Recognition, AIPR, pp. 1–5, September 2016Google Scholar
  12. 12.
    Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks with extremely low data complexity. In: Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, HASP 2013, pp. 7:1–7:8. ACM, New York (2013).  https://doi.org/10.1145/2487726.2487733
  13. 13.
    Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an ASIC AES implementation. In: 2004 Proceedings of the International Conference on Information Technology: Coding and Computing, ITCC 2004, vol. 2, pp. 546–552, April 2004Google Scholar
  14. 14.
    Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA – first experimental results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 35–50. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45238-6_4CrossRefGoogle Scholar
  15. 15.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16342-5_29CrossRefGoogle Scholar
  16. 16.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_8CrossRefGoogle Scholar
  17. 17.
    Standaert, F.-X., Mace, F., Peeters, E., Quisquater, J.-J.: Updates on the security of FPGAs against power analysis attacks. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 335–346. Springer, Heidelberg (2006).  https://doi.org/10.1007/11802839_42CrossRefGoogle Scholar
  18. 18.
    Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Samyde, D., Quisquater, J.-J.: Power analysis of FPGAs: how practical is the attack? In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 701–710. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45234-8_68CrossRefGoogle Scholar
  19. 19.
    Standaert, F.-X., Örs, S.B., Preneel, B.: Power analysis of an FPGA implementation of Rijndael: is pipelining a DPA countermeasure? In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_3CrossRefGoogle Scholar
  20. 20.
    Standaert, F.-X., Örs, S.B., Quisquater, J.-J., Preneel, B.: Power analysis attacks against FPGA implementations of the DES. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 84–94. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30117-2_11CrossRefGoogle Scholar
  21. 21.
    Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhao, X., et al.: MDASCA: an enhanced algebraic side-channel attack for error tolerance and new leakage model exploitation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 231–248. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29912-4_17CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Computer Science and Engineering Department, School of EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations