The Geometry of the Continental Wedge and Its Relation to the Rheology and Seismicity of the Chilean Interplate Boundary

  • Andrei Maksymowicz
  • Andres Tassara
Part of the Springer Earth System Sciences book series (SPRINGEREARTH)


A latitudinal tectonic segmentation along the Chilean subduction margin is defined by the modeling of the continental wedge geometry. The segments are characterized by different effective basal friction coefficients or Hubbert–Rubey fluid pressure ratio and are limited by the subduction of oceanic features and seaward continental prolongations. The analysis of the modeled parameters indicates that the process of tectonic erosion probably is associated with high levels of overpressure in the decóllement and inside the continental wedge. The observed segmentation shows a spatial correlation with the distribution of large earthquake ruptures, which suggest a link between the long-term and short-term deformation process. Joint interpretation of the results with the b-value analysis and the density-depth models in the 2010 Maule Mw8.8 earthquake zone shows the importance of these studies to understand the geodynamics of the subduction zones.


Accretionary wedge Basal friction Fluid pressure Tectonic erosion Coulomb wedge model Large earthquake ruptures 



Andrei Maksymowicz was supported by project FONDECYT 3150160 of the Chilean National Science Cooperation (CONICYT). Andres Tassara thanks project FONDECYT 1151175.


  1. Adam J, Reuther CD (2000) Crustal dynamics and active fault mechanics during subduction erosion: Application of frictional wedge analysis on to the North Chilean Forearc. Tectonophysics 321:297–325CrossRefGoogle Scholar
  2. Aki K (1981) A probabilistic synthesis of precursory phenomena. In: Simpson DW, Richards PG (eds) Earthquake prediction: An international review, Maurice Ewing Set., vol 4. AGU, Washington, D.C, pp 566–574Google Scholar
  3. Álvarez O, Nacif S, Gimenez M, Folguera A, Braitenberg C (2014) GOCE de-rived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics (ISSN0040-1951).
  4. Amante C, Eakins BW (2009) NOAA, Technical Memorandum. NESDIS; 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. p 19. NGDC-24Google Scholar
  5. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca–South America Euler vector. Earth Planet Sci Lett 171(3):329–334CrossRefGoogle Scholar
  6. Bangs N, Cande S (1997) Episodic development of a convergent margin inferred from structures and processes along the Southern Chile margin. Tectonics 16(3):489–503CrossRefGoogle Scholar
  7. Bangs N, Westbrook GK, Ladd JW, Buhl P (1990) Seismic velocities from the Barbados Ridge complex: Indicators of high pore fluid pressures in an accretionary complex. J Geophys Res 95:8767–8782CrossRefGoogle Scholar
  8. Becerra J, Arriagada C, Contreras-Reyes E, Bascuñan S, De Pascale GP, Reichert C, Díaz-Naveas J, Cornejo N (2016) Gravitational deformation and inherited structural control on slope morphology in the subduction zone of north-central Chile (ca. 29–33° S). Basin Res.
  9. Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction zone. J South Am Earth Sci 11:115–129CrossRefGoogle Scholar
  10. Bell CM (1984) Deformation produced by the subduction of a paleozoic turbidite sequence in northern Chile. J Geol Soc London 141:339–347CrossRefGoogle Scholar
  11. Bell CM, Suárez M (2000) The Río Lácteo Formation of Southern Chile. Late Paleozoic orogeny in the Andes of southernmost South America. J S Am Earth Sci 13(1–2):133–145CrossRefGoogle Scholar
  12. Bilek SL (2010) Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity. Tectonophysics 495(1–2).
  13. Booth-Rea G, Klaeschen D, Grevemeyer I, and Reston T (2008) Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics 27(TC4005).
  14. Boston B, Moore GF, Nakamura Y, Kodaira S (2014) Outer-rise normal fault development and influence on near-trench décollement propagation along the Japan Trench, off Tohoku. Earth Planets Space 66(1):135CrossRefGoogle Scholar
  15. Bourgois J, Guivel C, Lagabrielle Y, Calmus T, Boulague J, Daux V (2000) Glacial-interglacial trench supply variation, spreading-ridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45-48° S). J Geophys Res 105(B4):8355–8386CrossRefGoogle Scholar
  16. Calahorrano A, Sallares V, Sage F, Collot JY, Ranero CR (2008) Nonlinear variations of the physical properties along the Southern Ecuador subduction channel: Results from depth-migrated seismic data. Earth Planet Sci Lett 267:453–467. Scholar
  17. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile Trench. J Geophys Res 91:471–496CrossRefGoogle Scholar
  18. Cisternas M, Atwater BF, Torrejón F, Sawai Y, Machuca G, Lagos M, Eipert A, Youlton C, Salgado I, Kamataki T, Shishikura M, Rajendran CP, Malik JK, Rizal Y, Husni M (2005) Predecessors of the giant 1960 Chile earthquake. Nature 437:404–407. Scholar
  19. Clift P, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev Geophys 42(RG2001).
  20. Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gap. Nat Hazards 4(23–44).
  21. Contreras-Reyes E and Carrizo D (2011) Control of high oceanic features and subduction channel on earthquake ruptures along the Chile–Peru subduction zone. Phys Earth Planet Int 186(49–58). doi:
  22. Contreras-Reyes E, Osses A (2010) Lithospheric flexure modeling seaward of the Chile trench: Implications for oceanic plate weakening in the Trench Outer Rise region. Geophys J Int 182(1):97–112. Scholar
  23. Contreras-Reyes E, Grevemeyer I, Flueh ER, Reichert C (2008) Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at 38° S. J Geophys Res 113(B07303).
  24. Contreras-Reyes E, Flueh ER, and Grevemeyer I (2010) Tectonic control on sediment accretion and subduction off south central Chile: Implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29(TC6018).
  25. Contreras-Reyes E, Jara J, Grevemeyer I, Ruiz S, Carrizo D (2012) Abrupt change in the dip of the subducting plate beneath north Chile. Nat Geosci 5(342–345).
  26. Contreras-Reyes E, Becerra J, Kopp H, Reichert C, Díaz-Naveas J (2014) Seismic structure of the north-central Chile convergent margin: Subduction erosion of a paleomagmatic arc. Geophys Res Lett 41(5):1523–1529. Scholar
  27. Contreras-Reyes E, Ruiz J, Becerra J, Kopp H, Reichert C, Maksymowicz A, Arriagada C (2015) Structure and tectonics of the central Chilean margin (31°–33° S): Implications for subduction erosion and shallow crustal seismicity. Geophys J Int 653(2):776–791.
  28. Corbi F, Funiciello F, Faccenna C, Ranalli G, Heuret A (2011) Seismic variability of subduction thrust faults: Insights from laboratory models. J Geophys Res 116(B06304).
  29. Dahlen FA (1984) Noncohesive critical Coulomb wedges: An exact solution. J Geophys Res 89(10):125–133Google Scholar
  30. Dahlen FA, Suppe J, Davis DM (1984) Mechanics of fold-and thrust belts and accretionary wedges: Cohesive Coulomb theor. J Geophys Res 8(9):10087–10101CrossRefGoogle Scholar
  31. Davis DM, Suppe J, Dahlen FA (1983) Mechanics of fold-and thrust belts and accretionary wedges. J Geophys Res 88:1153–1172CrossRefGoogle Scholar
  32. Diaz-Naveas J (1999) Sediment subduction and accretion at the Chilean Convergent Margin between 35′ and 40′S, Dissertation zur Erlangung des Doktorgrades. Christian-Albrechts-Universitat zu Kiel, 1999. 130 pGoogle Scholar
  33. DiLeonardo CG, Moore JC, Nissen S, Bangs N (2002) Control of internal structure and fluid-migration pathways within the Barbados Ridge decollement zone by strike-slip faulting: Evidence from coherence and three-dimensional seismic amplitude imaging. Bull Geol Soc Am 114(1):51–63CrossRefGoogle Scholar
  34. Dominguez S, Malavieille J, Lallemand SE (2000) Deformation of accretionary wedges in response to seamount subduction: Insights from sandbox experiments. Tectonics 19. issn: 0278-7407
  35. Eason DE, Dunn RA, Canales JP, Sohn R (2016) Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, mid-Atlantic Ridge Rainbow region (35°45′–36°35′N). Geochem Geophys Geosyst. In Press.
  36. Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res 188:260–276. Scholar
  37. Flueh ER, Grevemeyer I (eds) (2005) TIPTEQ SONNE Cruise SO-181, from the Incoming Plate to mega Thrust EarthQuakes. Geomar Rep 102, Geomar, Kiel, GermanyGoogle Scholar
  38. Geersen J, Ranero C, Barkhausen U, Reichert C (2015) Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area. Nat Comm 6(8267).
  39. Ghosh A, Newman AV, Thomas AM, Farmer GT (2008) Interface locking along the subduction megathrust from b-value mapping near Nicoya Peninsula, Costa Rica. Geophys Res Lett 35:L01301. Scholar
  40. Glodny J, Lohrmann J, Echtler H, Grafe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of apaleoaccretionary wedge: Insights from combined isotope tectonochronology and sandbox modelling of the South-Central Chilean for earc. Earth Planet Sci Lett 231:23–39Google Scholar
  41. Gutscher MA, Kukowski K, Malavieille J, Lallemand S (1996) Cyclical behavior of thrust wedges: Insights from high basal friction sandbox experiments. Geology 24(2):135–138CrossRefGoogle Scholar
  42. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. J Geophys Res 117(B01302).
  43. Hervé F, Fanning CM (2000) Late Triassic zircons in metaturbidites of the Chonos Metamorphic Complex, southern Chile. Revista Geológica de Chile 28(1):91–104Google Scholar
  44. Hervé F, Calderón M, Faúndez V (2008) The metamorphic complexes of the Patagonian and Fuegian Andes. Geologica Acta 6(1):43–53Google Scholar
  45. Hirata T (1989) A correlation between the b value and the fractal dimension of earthquakes. J Geophys Res 94:7505–7514CrossRefGoogle Scholar
  46. Kodaira S, Takahashi N, Nakanishi A, Miura S, Kaneda Y (2000) Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake. Science 289:104–106CrossRefGoogle Scholar
  47. Koge H et al (2014) Friction properties of the plate boundary megathrust beneath the frontal wedge near the Japan Trench: An inference from topographic variation. Earth Planets Space 66(1):153. Scholar
  48. Kukowski N, Oncken O (2006) Subduction erosion—is this the “normal” mode of fore-arc material transfer along the Chilean margin? In: Oncken O, Chong G, Franz G, Giese P, Götze HJ, Ramos V, Strecker M, Wigger P (eds) Andean Geodynamics, Frontiers in Geosciences, vol 1. Springer, pp 217–236Google Scholar
  49. Lallemand SE, Schnurle P, Malavieille J (1994) Coulomb theory applied to accretionary and nonaccretionary wedges—Possible causes for tectonic erosion and/or frontal accretion. J Geophys Res 99:12033–12055CrossRefGoogle Scholar
  50. Le Pichon X, Henry P, Lallemand S (1993) Accretion and erosion in subduction zones: The role of fluids. Annu Rev Earth Planet Sci 21:307–331CrossRefGoogle Scholar
  51. Legrand D (2002) Fractal dimensions of small, intermediate and large earthquakes. Bull Seismol Soc Am 92:3318–3320CrossRefGoogle Scholar
  52. Legrand D, Tassara A, Morales D (2012) Megathrust asperities and clusters of slab dehydration identified by spatiotemporal characterization of seismicity below the Andean margin. Geophys J Int 201 191(3):923–931Google Scholar
  53. MacKay ME (1995) Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics 14:1309–1320CrossRefGoogle Scholar
  54. Mogi K (1962) Magnitude-frequency relationship for elastic shocks accompanying fractures of various materials and some related problems in earthquakes, vol 40. Bulletin of the Earthquake Research Institute, University of Tokyo, pp 831–853Google Scholar
  55. Main I, Henderson JR, Meredith PG, Sammonds PR (1994) Self-organised criticality and fluid-rock interactions in the brittle field. Pure Appl Geophys 142:529–543Google Scholar
  56. Maksymowicz A (2015) The geometry of the Chilean continental wedge: Tectonic segmentation of subduction processes off Chile. Tectonophysics 659:183–196.
  57. Maksymowicz A, Contreras-Reyes E, Grevemeyer I, Flueh ER (2012) Structure and geodynamics of the post-collision zone between the Nazca–Antarctic spreading center and South America. Earth Planet Sci Lett 345–348:27–37. Scholar
  58. Maksymowicz A, Tréhu A, Conterras-Reyes E, Ruiz S (2015) Density-depth model of the continental wedge at the maximum slip segment of the Maule Mw8.8 megathrust earthquake. Earth Planet Sci Lett 409:265–277. Scholar
  59. Moreno M, Melnick D, Rosenau M, Báez JC, Klotz J, Oncken O, Tassara A, Bataille K, Chen J, Socquet A, Bevis M, Bolte J, Vigny C, Brooks B, Ryder I, Grund V, Smalley R, Carrizo D, Bartsch M, Hase H (2012) Toward understanding tectonic control on the Mw8.8 2010 Maule Chile earthquake. Earth Planet Sci Lett 321:152–165CrossRefGoogle Scholar
  60. Moscoso E, Grevemeyer I (2015) Bending-related faulting of the incoming oceanic plate and its effect on lithospheric hydration and seismicity: A passive and active seismological study offshore Maule, Chile. J Geodyn 90:58–70, ISSN 0264-3707.
  61. Moscoso E, Grevemeyer I, Contreras-Reyes E, Flueh ER, Dzierma Y, Rabbel W, Thorwart M (2011) Revealing the deep structure and rupture plane of the 2010 Maule, Chile earthquake (Mw = 8.8) using wide angle seismic data. Earth Planet Sci Lett 307:147–155. Scholar
  62. Naif S, Key K, Constable S, Evans RL (2015) Water-rich bending faults at the Middle America Trench. Geochem Geophys Geosyst 16:2582–2597. Scholar
  63. Park J, Tsuru T, Kaneda Y, Kono Y, Kodaira S, Takahashi N, Kinoshita H (1999) A subducting seamount beneath the Nankai Accretionary Prism off Shikoku, southwestern Japan. Geophys Res Lett 26. issn: 0094-8276
  64. Polonia A, Torelli L, Brancolini G, Loreto MF (2007) Tectonic accretion versus erosion along the southern Chile trench: Oblique subduction and margin segmentation. Tectonics 26(TC3005).
  65. Ranero CR, Morgan JP, McIntosh KD, Reichert C (2003) Bending, faulting, and mantle serpentinization at the Middle America trench. Nature 425:367–373CrossRefGoogle Scholar
  66. Ranero CR, von Huene R, Weinrebe W, Reichert C (2006) Tectonic Processes along the Chile Convergent Margin. In: Onken O et al. (eds) The Andes: Active Subduction Orogeny. Berlin, Springer-Verlag, pp 91–122Google Scholar
  67. Ranero CR, Grevemeyer I, Sahling H, Barckhausen U, Hensen C (2008) Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem Geophys Geosyst 9(Q03S04)Google Scholar
  68. Ruegg JC, Rudloff A, Vigny C, Madariaga R, de Chabalier JB, Campos J, Kausel E, Barrientos S, Dimitrov D (2009) Interseismic strain accumulation measured by GPS in the seismic gap between Constitución and Concepción in Chile. Phys Earth Planet In 175:78–85. Scholar
  69. Ruh J, Gerya T, Burg JP (2013) High resolution 3D numerical modeling of thrust wedges: Influence of décollement strength on transfer zones. Geochem Geophys Geosyst 14(4):1131–1155CrossRefGoogle Scholar
  70. Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J (2014) Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw8.1 earthquake. Science 345:1165–1169. Scholar
  71. Sage F, Collot JY, Ranero CR (2006) Interplate patchiness and subduction-erosion mechanisms: Evidence from depth-migrated seismic images at the central Ecuador convergent margin. Geology 34:997–1000.
  72. Sallares V, Ranero CR (2005) Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23°30′S). J Geophys Res 110(B06101)Google Scholar
  73. Scherwath M, Contreras-Reyes, Flueh ER, Grevemeyer I, Krabbenhoeft A, Papenberg C, Petersen CJ, Weinrebe RW (2009) Deep lithospheric structures along the southern central Chile margin from wide-angle P-wave modeling. Geophys J Int 179(1):579–600.
  74. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542CrossRefGoogle Scholar
  75. SERNAGEOMIN (2002) Mapa Geológico de Chile. Escala 1:1000000 Map M61, Servicio Nacional de Geología y MineríaGoogle Scholar
  76. Song TA, Simons M (2003) Large trench-parallel gravity variations predict seismo-genic behavior in subduction zones. Science 301:630–633CrossRefGoogle Scholar
  77. Suppe J (2014) Fluid overpressures and strength of the sedimentary upper crust. J Struct Geol 69(2014):481–492. Scholar
  78. Tassara A (2010) Control on forearc density structure on megathrust shear strength along the Chilean subduction zone. Tectonophysics 495:34–47. Scholar
  79. Tassara A, Soto H, Bedford J, Moreno M, Baez JC (2016) Contrasting amount of fluids along the megathrust ruptured by the 2010 Maule earthquake as revealed by a combined analysis of aftershocks and afterslip. Tectonophysics 671:95–109, ISSN 0040-1951.
  80. Thomas C, Livermore R, Pollitz F (2003) Motion of the Scotia Sea plates. Geophys J Int 155:789–804CrossRefGoogle Scholar
  81. Thornburg TM, Kulm LD (1987) Sedimentation in the Chile Trench: Depositional morphologies, lithofacies, and stratigraphy. Geol Soc Am Bull 98:33–52CrossRefGoogle Scholar
  82. Tilmann F et al. (2016) The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake? Geophys Res Lett 43:574–583Google Scholar
  83. Vannucchi P, Sage F, Morgan JP, Remitti F, Collot JY (2012) Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochem Geophys Geosyst 13(Q02003).
  84. Völker D, Geersen J, Contreras-Reyes E, Reichert C (2013) Sedimentary fill of the Chile Trench (32°–46° S): Volumetric distribution and causal factors. J Geol Soc London. Scholar
  85. von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta, Chile. J Geophys Res 108(B2):2079. Scholar
  86. Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centered asperities in great subduction zone earthquakes: A link between slip, subsidence, and subduction erosion? J Geophys Res 108(B10):2507.
  87. Willner AP, Thomson SN, Króner A, Wartho JA, Wrjbrans J, Hervé F (2005) Time markers for the evolution and exhumation history of a late Palaeozoic paired metamorphic beltin central Chile (34°–35°30′S). J Petrol 46:1835–1858CrossRefGoogle Scholar
  88. Willner AP, Massonne HJ, Ring U, Sudo M, Thomson SN (2012) P-T evolution and timing of a late Palaeozoic fore-arc system and its heterogeneous Mesozoic overprint in north-central Chile (latitudes 31–32 degrees S). Geol Mag 149:177–207. Scholar
  89. Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Roy Astron Soc 31:341–359CrossRefGoogle Scholar
  90. Yáñez GA, Ranero CR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across the southern central Andes (32–34° S): The role of the Juan Fern_andez ridge in the Late Tertiary evolution of the margin. J Geophys Res Solid Earth 106(B4):6325–6345CrossRefGoogle Scholar
  91. Chen YL, Hung SH, Jiang JS, Chiao LY (2016) Systematic correlations of the earthquake frequency-magnitude distribution with the deformation and mechanical regimes in the Taiwan orogen. Geophys Res Lett 43(10):5017–5025Google Scholar
  92. Zelt CA (1999) Modelling strategies and model assessment for wide-angle seismic travel time data. Geophys J Int 139:183–204CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Geofísica, Facultad de Ciencias Físicas Y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Ciencias de La Tierra, Universidad de ConcepciónCasillaChile

Personalised recommendations