Skip to main content

A Biological Framework for the Development of Therapy in Prostate Cancer

  • Chapter
Progress in Anti-Cancer Chemotherapy

Part of the book series: Progress in Anti-Cancer Chemotherapy ((ANTI-CANCER,volume 4))

  • 62 Accesses

Abstract

Because of the inherent heterogeneous nature of clinically evident prostate cancer and its long and unpredictable natural history, the potential benefits of therapy are obscured. Traditionally, the therapy decision has been based on the clinically determined anatomic stage of the disease. When truly confined to the prostate, the disease can be eradicated by local therapeutic modalities. Unfortunately, clinical staging — derived from available diagnostic tools such as prostate-specific antigen (PSA), transrectal ultrasonograpy (TRUS), and TRUS-guided biopsies — does not correlate well with pathological staging. Androgen ablation, the standard therapy for metastatic disease, is limited in its efficacy. Although approximately 85% of patients achieve tumor response, the vast majority of these relapse, with a median time to progression of 12 to 18 months, and such patients have a median survival of 3 years. This fatal progression of prostate cancer occurs coincident with androgen-independent growth of the tumor. Until recently, nonhormonal therapeutic approaches have been applied during this androgen-independent progression, when the salutary effect from the therapy is often minimal. The increasing understanding of the sequential and concurrent cellular and molecular events that occur during the development and progression of prostate cancer necessitates, a new clinico- biological classification based on tumor-specific biology, one that will classify patients into relevant clinical categories for development of target-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigler SA, Deering RE, Brawer MK (1993) Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24:220–226

    Article  PubMed  CAS  Google Scholar 

  2. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA (1994) Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 73:678–687

    CAS  Google Scholar 

  3. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  Google Scholar 

  4. Silberman MA, Partin AW, Veltri RW, Epstein JI (1997) Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in Gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer 79:772–779

    Article  PubMed  CAS  Google Scholar 

  5. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    Article  PubMed  CAS  Google Scholar 

  6. Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki T, Kerbel RS (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implication for induction and inhibition of tumor angiogenesis. Cancer Res 55:4575–4580

    PubMed  CAS  Google Scholar 

  7. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS (1998) Impact of oncogenes in tumor angiogenesis: mutant K-ras upregulation of vascular endothelial growth factor/vascular permeability factor is necessary but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 95:3609–3614

    Article  PubMed  CAS  Google Scholar 

  8. Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257–265

    PubMed  CAS  Google Scholar 

  9. Joseph IB, Nelson JB, Denmeade SR, Isaacs JT (1999) Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin Cancer Res 3:2507–2511

    Google Scholar 

  10. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  PubMed  CAS  Google Scholar 

  11. Powell WC, Knox JD, Navre M, Grogan TM, Kittelson J, Nagle RB, Bowden GT (1993) Expression of the metalloproteinase matrilysin in DU-145 cells increases their invasive potential in severe combined immunodeficient mice. Cancer Res 53:417–422

    PubMed  CAS  Google Scholar 

  12. Pajouh MS, Nagle RB, Breathnach R, Finch JS, Brawer MK, Bowden GT (1991) Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117:144–150

    Article  PubMed  CAS  Google Scholar 

  13. Fuchs ME, Brawer MK, Rennels MA, Nagle RB (1989) The relationship of basement membrane to histologic grade of human prostatic carcinoma. Mod Pathol 2:105–111

    PubMed  CAS  Google Scholar 

  14. Baker T, Tickle S, Wasan H, Docherty A, Isenberg D, Waxman J (1994) Serum metalloproteinases and their inhibitors: markers for malignant potential. Br J Cancer 70:506–512

    Article  PubMed  CAS  Google Scholar 

  15. Harris CC (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88:1442–1455

    Article  PubMed  CAS  Google Scholar 

  16. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85:1657–1669

    Article  PubMed  CAS  Google Scholar 

  17. Berner A, Nesland JM, Waehre H, Slide J, Fossa SD (1993) Hormone resistant prostatic adenocarcinoma. An evaluation of prognostic factors in pre-and post-treatment specimens. Br J Cancer 68:380–384

    CAS  Google Scholar 

  18. Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR, Neoptolemos JP (1994) Loss of the retinoblastoma susceptibility gene (RBI) is a frequent and early event in prostatic tumorigenesis. Br J Cancer 70:1252–1257

    Article  PubMed  CAS  Google Scholar 

  19. Bookstein R, Shew JY, Chen PL, Scully P, Lee WH (1990) Suppression of tumorigenicity of human prostate carcinoma cells by replacing a mutated RB gene. Science 247:712–715

    Article  PubMed  CAS  Google Scholar 

  20. Prendergast NJ, Walther PJ (1995) Genetic alterations in prostate adenocarcinoma. Surg Oncol Clin N Am 4:241–255

    PubMed  CAS  Google Scholar 

  21. Leonard DM (1997) Ras farnesyltransferase: a new therapeutic target. J Med Chem 40:2971–2990

    Article  PubMed  CAS  Google Scholar 

  22. Sepp-Lorenzino L, Rosen N (1998) A farnesyl-protein transferase inhibitor induces p21 expression and Gl block in p53 wild type tumor cells. J Biol Chem 273:20243–20251

    Article  PubMed  CAS  Google Scholar 

  23. Lebowitz PF, Sakamuro D, Prendergast GC (1997) Farnesyltransferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res 57:708–713

    PubMed  CAS  Google Scholar 

  24. Gu K, Mes Masson AM, Gauthier J, Saad F (1996) Overexpression of HER-2/neu in human prostate cancer and benign hyperplasia. Cancer Lett 99:185–189

    Article  PubMed  CAS  Google Scholar 

  25. Giri DK, Wadhwa SN, Upadhaya SN, Talwar GP (1993) Expression of NEU/HER-2 oncoprotein (pl85neu) in prostate tumors: an immunohistochemical study. Prostate 23:329–336

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz S Jr, Caceres C, Morote J, De Torres I, Rodriguez-Vallejo JM, Gonzalez J, Reventos J (1999) Gains of the relative genomic content of erbB-1 and erbB-2 in prostate carcinoma and their association with metastasis. Int J Oncol 14:367–371

    PubMed  CAS  Google Scholar 

  27. Craft N, Shostak Y, Carey M, Sawyers CL (1999) A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 5:280–285

    Article  PubMed  CAS  Google Scholar 

  28. Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ (1991) BCL-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 88:6961–6965

    Article  PubMed  CAS  Google Scholar 

  29. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LWK, Hsieh JT, Tu SM, Campbell ML (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52:69406944

    Google Scholar 

  30. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, Hsieh WS, Isaacs WB, Nelson WG (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione s-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 91:11733–11737

    Article  PubMed  CAS  Google Scholar 

  31. Morton RA Jr, Watkins JJ, Bova GS, Wales MM, Baylin SB, Isaacs WB (1996) Hypermethylation of chromosome 17p locus D17S5 in human prostate tissue. J Urol 156:512–516

    Article  PubMed  CAS  Google Scholar 

  32. Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ, Pontes JE (1994) Fluorescence in situ hybridization analysis of 8p allelic loss and chromosomal instability in human prostate cancer. Cancer Res 54:3824–3830

    PubMed  CAS  Google Scholar 

  33. Ripple MO, Henry WF, Rago HR, Wilding E (1997) Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 89:40–48

    Article  PubMed  CAS  Google Scholar 

  34. Tjoa BA, Elgamal AA, Murphy GP (1999) Vaccine therapy for prostate cancer. Urol Clin North Am 26:365–374

    Article  PubMed  CAS  Google Scholar 

  35. Finn О J, Jerome KR, Henderson RA, Pecher G, Domenech N, Magarian-Blander J, BarrattBoyes SM (1995) MUC-1 epithelial tumor mucin-based immunity and cancer vaccines. Immunol Rev 145:61–89

    Article  PubMed  CAS  Google Scholar 

  36. Lin SH, Pu YS (1999) Function and therapeutic implication of C-CAM cell-adhesion molecule in prostate cancer. Semin Oncol 26:227–233

    PubMed  CAS  Google Scholar 

  37. Morton RA, Ewing CM, Nagafuchi A, Tsukita S, Isaacs WB (1993) Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res 53:3585–3590

    PubMed  CAS  Google Scholar 

  38. Behrens J, Mareel MM, Van Roy FM, Birchmeier W (1989) Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108:2435–2447

    Article  PubMed  CAS  Google Scholar 

  39. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, Van Roy F (1991) Genetic manipulation of E-cadherin expression by epithelial tumor cell reveals an invasion suppressor role. Cell 66:107–119

    Article  PubMed  CAS  Google Scholar 

  40. Cheng L, Nagabhushan M, Pretlow TP, Amini SB, Pretlow TG (1996) Expression of E-cadherin in primary and metastatic prostate cancer. Am J Pathol 148:1375–1380

    PubMed  CAS  Google Scholar 

  41. Graff JR, Herman JF, Lapidus RG, Chopra H, Xu R, Jarrard DF, Isaacs WB, Pitha PM, Davidson NE, Baylin SB (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    PubMed  CAS  Google Scholar 

  42. Scher HI, Sarkis A, Reuter V, Cohen D, Netto G, Petrylak D, Lianes P, Fuks Z, Mendelsohn J, Cordon-Cardo С (1995) Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor-ос in the progression of prostatic neoplasms. Clin Cancer Res 1:545–550

    PubMed  CAS  Google Scholar 

  43. Goldstein N1, Prewett M, Zuklys K, Rockwell P, Mendelsohn J (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318

    Google Scholar 

  44. Aboud-Pirak E, Hurwitz E, Pirak ME, Bellot F, Schlessinger J, Sela M. (1988) Efficacy of antibodies to epidermal growth factor receptor against KB carcinoma in vitro and in nude mice. J Natl Cancer Inst 80:1605–1611

    Article  PubMed  CAS  Google Scholar 

  45. Hanauske AR, Osborne CK, Chamness GC, Clark GM, Forseth В J, Buchok JB, Arteaga CL, Von Hoff DD (1987) Alteration of EGF-receptor binding in human breast cancer cells by antineoplastic agents. Eur J Cancer Clin Oncol 23:545–551

    Article  PubMed  CAS  Google Scholar 

  46. Henriksen R, Funa K, Wilander E, Backstrom T, Ridderheim M, Oberg K (1993) Expression and prognostic significance of platelet-derived growth factor and its receptor in epithelial ovarian neoplasms. Cancer Res 53:4550–4554

    PubMed  CAS  Google Scholar 

  47. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219

    PubMed  CAS  Google Scholar 

  48. Sintich SM, Lamm ML, Sensibar JA, Lee С (1999) Transforming growth factor-beta-1-induced proliferation of the prostate cancer cell line, TSU-Prl: the role of platelet-derived growth factor. Endocrinology 140:3411–3415

    Article  PubMed  CAS  Google Scholar 

  49. Eckhardt SG, Rizzo J, Sweeney KR, Cropp G, Baker SD, Kraynak MA, Kuhn JG, Villalona-Calero MA, Hammond L, Weiss G, Thurman A, Smith L, Drengler R, Eckardt JR, Moczygemba J, Hannah AL, Von Hoff DD, Rowinsky EK (1999) Phase I and pharmacologic study of the tyrosine kinase inhibitor SU101 in patients with advanced solid tumors. J Clin Oncol 17:1095–1104

    PubMed  CAS  Google Scholar 

  50. Culig Z, Hobisch A, Cronauer MV, Radmayer C, Trapman J, Hittmair A, Bartsch G, Klocker H (1995) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-1, keratinocyte growth factor, and epidermal growth factor. Eur Urol 27 (Suppl 2):45–47

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag France

About this chapter

Cite this chapter

Kim, J., Logothetis, C. (2000). A Biological Framework for the Development of Therapy in Prostate Cancer. In: Khayat, D., Hortobagyi, G.N. (eds) Progress in Anti-Cancer Chemotherapy. Progress in Anti-Cancer Chemotherapy, vol 4. Springer, Paris. https://doi.org/10.1007/978-2-8178-0920-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0920-5_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-59692-6

  • Online ISBN: 978-2-8178-0920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics