Skip to main content

Basic immunology: the fetus and the newborn

  • Conference paper
Congenital toxoplasmosis

Abstract

Immaturity of the developing immune system in the fetus and neonate renders them susceptible to a variety of pathogens, including Toxoplasma gondii. Recent advances in understanding fetal and neonatal immunity, cytokines, and immunogenetics, combined with new knowledge of the biology of T. gondii provide important insights relevant to this potentially devastating infection. Cell-mediated immune responses are the major mechanisms of host defense against T. gondii infection. Herein, we consider ontogeny of innate and specific cell-mediated immune responses in the human fetus and neonate in conjunction with a discussion of immune mechanisms likely to protect humans against T gondii, studies of immunity of humans with congenital and postnatally acquired toxoplasmosis, and work which demonstrates immune mechanisms important in protection against toxoplasmosis in murine models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boyer K.a.M R (1998) Toxoplasmosis: Principles and Practice of Pediatric Infectious Disease. In : Long P (ed) Principles and Practice of Pediatric Infectious Disease. Prober, Churchill Livingstone New York, pp. 1421–1448

    Google Scholar 

  2. Deckert-Schluter M et al (1994) Activation of the innate immune system in murine congenital Toxoplasma encephalitis. J Neuroimmunol 53(1):47–51

    PubMed  CAS  Google Scholar 

  3. Mack D JJ, Roberts F, Roberts C, Estes R, David C, Grumet FC, McLeod R (1999) HLAClass II Genes Modify Outcome of Infection. (in preparation)

    Google Scholar 

  4. Versteeg R (1992) NK cells and T cells: mirror images? Immunol Today 13(7):244–247

    PubMed  CAS  Google Scholar 

  5. Schlossman S, BL, Gilks W, Harlan J, Kishimoto T, Morimoto C, Ritz J, Shaw S, Silverstein R, Springer T, Tedder T, Todd R (1994) Leukocyte Typing. 5’h ed. S S Oxford University Press

    Google Scholar 

  6. Abbas AK, Lichtman AH, Pober JS (1997) Cellular and molecular immunology. 3rd ed. Saunders text and review series. Saunders, Philadlephia: xii, 494 , 8 of plates

    Google Scholar 

  7. Raulet DH (1992) Immunology. A sense of something missing [news; comment]. Nature 358(6381):21–22

    PubMed  CAS  Google Scholar 

  8. Moretta L et al (1992) Allorecognition by NK cells: nonself or no self? Immunol Today 13(8):300–306

    PubMed  CAS  Google Scholar 

  9. Seder RA et al (1993) Interleukin 12 acts directly on CD4’ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA, 90(21):10188–10192

    PubMed  CAS  Google Scholar 

  10. Bancroft GJ (1993) The role of natural killer cells in innate resistance to infection. Curr Opin Immunol, 5(4):503–510

    PubMed  CAS  Google Scholar 

  11. Lanier LL (1997) Natural killer cells: from no receptors to too many. Immunity, 6(4):371–378

    PubMed  CAS  Google Scholar 

  12. Moretta A et al (1997) Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes. Immunol Rev 155:105–117

    PubMed  CAS  Google Scholar 

  13. Agrawal S et al (1999) Cutting Edge: MHC Class I Triggering by a Novel Cell Surface Ligand Costimulates Proliferation of Activated Human T Cells. J Immunol 162(3): 1223–1226

    PubMed  CAS  Google Scholar 

  14. Phillips JH et al (1992) Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon delta proteins. J Exp Med 175(4):1055–1056

    PubMed  CAS  Google Scholar 

  15. Lewis DB, Wilson CB (1995) Developmental Immunology and Role of Host Defenses in Neonatal Susceptibility. In : Remington JS, Klein RB (eds) Infections of the Fetus and Newborn Infant. WB Saunders Company: Philadelphia. pp. 20–98

    Google Scholar 

  16. Boehmer (1997) Aspects of lymphocyte developmental biology. Immunology Today, 18(6): 260–262

    Google Scholar 

  17. Lanier LL, Phillips JL (1992) Natural killer cells. Curr Opin Immunol 4(1):38–42

    PubMed  CAS  Google Scholar 

  18. Yabuhara A, Kawai H, Komiyama A (1990) Development of natural killer cytotoxicity during childhood: marked increases in number of natural killer cells with adequate cytotoxic abilities during infancy to early childhood. Pediatr Res 28(4):316–322

    PubMed  CAS  Google Scholar 

  19. Qian JX et al (1997) Decreased interleukin-15 from activated cord versus adult peripheral blood mononuclear cells and the effect of interleukin-15 in upregulating antitumor immune activity and cytokine production in cord blood. Blood 90(8): 3106–3117

    PubMed  CAS  Google Scholar 

  20. Shore SL et al (1977) Antibody-dependent cellular cytotoxicity to target cells infected with herpes simplex viruses: functional adequacy in the neonate. Pediatrics 59(1):22–28

    PubMed  CAS  Google Scholar 

  21. Pabst HF, Kreth HW (1980) Ontogeny of the immune response as a basis of childhood disease. J Pediatr 97(4):519–534

    PubMed  CAS  Google Scholar 

  22. Sancho L et al (1991) Two different maturational stages of natural killer lymphocytes in human newborn infants. J Pediatr 119(3): 446–454

    PubMed  CAS  Google Scholar 

  23. Baley JE, Schacter BZ (1985) Mechanisms of diminished natural killer cell activity in pregnant women and neonates. J Immunol 134(5):3042–3048

    PubMed  CAS  Google Scholar 

  24. Subauste CS, Dawson L, Remington JS (1992) Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii. J Exp Med 176(6):1511–1519

    PubMed  CAS  Google Scholar 

  25. Dannemann BR et al (1989) Assessment of human natural killer and lymphokine-activated killer cell cytotoxicity against Toxoplasma gondii trophozoites and brain cysts. J Immunol 143(8):2684–2691

    PubMed  CAS  Google Scholar 

  26. Suzuki Y et al (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science 240(4851):516–518

    PubMed  CAS  Google Scholar 

  27. Denkers EY et al (1993) Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med 178(5): 1465–1472

    PubMed  CAS  Google Scholar 

  28. Hunter CA et al (1994) Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin- 12, and tumor necrosis factor alpha. Infect Immun 62(7):2818–2824

    PubMed  CAS  Google Scholar 

  29. Hunter CA et al (1997) The role of the CD28B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J Immunol 158(5):2285–2293

    PubMed  CAS  Google Scholar 

  30. Beaman MH, Araujo FG, Remington JS (1994) Protective reconstitution of the SCID mouse against reactivation of toxoplasmic encephalitis. J Infect Dis 169(2):375–383

    PubMed  CAS  Google Scholar 

  31. Lindberg RE, Frenkel JK (1977) Toxoplasmosis in nude mice. J Parasitol 63(2):219–221

    PubMed  CAS  Google Scholar 

  32. Hughes HP et al (1988) Absence of a role for natural killer cells in the control of acute infection by Toxoplasma gondii oocysts. Clin Exp Immunol, 72(3):394–399

    PubMed  CAS  Google Scholar 

  33. van Furth R, Raeburn JA, van Zwet TL (1979) Characteristics of human mononuclear phagocytes. Blood 54(2):485–500

    PubMed  Google Scholar 

  34. Glauser MP et al (1991) Septic shock: pathogenesis [see comments]. Lancet 338(8769): 732–736

    PubMed  CAS  Google Scholar 

  35. Scharton-Kersten TM et al (1996) In the absence of endogenous IFN-gamma, mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. J Immunol, 157(9):4045–4054

    PubMed  CAS  Google Scholar 

  36. McDyer JF, Wu CY, Seder RA (1998) The regulation of IL-12: its role in infectious, autoimmune, and allergic diseases. J Allergy Clin Immunol 102(1):11–15

    PubMed  CAS  Google Scholar 

  37. Gazzinelli RT et al (1994) Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. J Immunol 153(6): 2533–2543

    PubMed  CAS  Google Scholar 

  38. Ma X et al (1996) The interleukin 12 p40 gene promoter is primed by interferon gamma in monocytic cells. J Exp Med 183(1):147–157

    PubMed  CAS  Google Scholar 

  39. Abbas AK, Lichtman AH, Pober JS (1991) Cellular and Molecular Immunology. Saunders, Philadelphia.

    Google Scholar 

  40. McLeod RJJ, Estes R, Mack D (1996). Toxoplasma gondii. In : Gross U (ed) in Current Topics in Microbiology and Immunology. Springer-Verlag, Berlin Heidelberg, pp. 95112

    Google Scholar 

  41. Roth R, Spiegelberg HL (1996) Activation of cloned human CD4+ Thl and Th2 cells by blood dendritic cells. Scand J Immunol 43(6):646–651

    PubMed  CAS  Google Scholar 

  42. Bhardwaj N et al (1996) IL-12 in conjunction with dendritic cells enhances antiviral CD8+ CTL responses in vitro. J Clin Invest 98(3):715–722

    PubMed  CAS  Google Scholar 

  43. Bhardwaj N et al (1992) Dendritic cells are potent antigen-presenting cells for microbial superantigens. J Exp Med 175(1):267–273

    PubMed  CAS  Google Scholar 

  44. Cella M et al (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184(2):747–752

    PubMed  CAS  Google Scholar 

  45. Kelemen E, Janossa M (1980) Macrophages are the first differentiated blood cells formed in human embryonic liver. Exp Hematol 8(8):996–1000

    PubMed  CAS  Google Scholar 

  46. English BK et al (1992) Decreased granulocyte-macrophage colony-stimulating factor production by human neonatal blood mononuclear cells and T cells. Pediatr Res 31(3): 211–216

    PubMed  CAS  Google Scholar 

  47. Lee SM et al (1996) Decreased interleukin-12 (IL-12) from activated cord versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 88(3):945–954

    PubMed  CAS  Google Scholar 

  48. Christensen RD (1989) Hematopoiesis in the fetus and neonate. Pediatr Res 26(6):531–535

    PubMed  CAS  Google Scholar 

  49. Speer CP et al (1985) Oxidative metabolism in cord blood monocytes and monocyte-derived macrophages. Infect Immun 50(3):919–921

    PubMed  CAS  Google Scholar 

  50. Conly ME, Speert DP (1991) Human neonatal monocyte-derived macrophages and neutrophils exhibit normal nonopsonic and opsonic receptor-mediated phagocytosis and superoxide anion production. Biol Neonate 60(6):361–366

    PubMed  CAS  Google Scholar 

  51. Wilson CB, Haas JE (1984) Cellular defenses against Toxoplasma gondii in newborns. J Clin Invest 73(6):1606–1616

    PubMed  CAS  Google Scholar 

  52. Lin RY (1996) The role of the fetal fibroblast and transforming growth factor-beta in a model of human fetal wound repair. Semin Pediatr Surg 3:165–174

    CAS  Google Scholar 

  53. Seguin R, Kasper LH (1999) Sensitized lymphocytes and CD40 ligation augment interleukin-12 production by human dendritic cells in response to Toxoplasma gondii [In Process Citation]. J Infect Dis 179(2):467–474

    PubMed  CAS  Google Scholar 

  54. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell [see comments]. Nature 393(6684): 474–478

    PubMed  CAS  Google Scholar 

  55. Schoenberger SP et al (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions [see comments]. Nature 393(6684):480–483

    PubMed  CAS  Google Scholar 

  56. DeKruyff RH, Gieni RS, Umetsu DT (1997) Antigen-driven but not lipopolysaccharidedriven IL-12 production in macrophages requires triggering of CD40. J Immunol 158(1):359–366

    PubMed  CAS  Google Scholar 

  57. Sousa CR et al (1997) In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas [see comments]. J Exp Med 186(11):1819–1829

    Google Scholar 

  58. Sorg RV, K.G.a.P.W. (1998) Functional competence of Dendritic Cells in human umbilical cord blood. Bone Marrow Transplantation 22(Suppl 1.):552–554

    Google Scholar 

  59. Denkers EY, Gazzinelli RT (1998) Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection. Clin Microbiol Rev 11(4):569–588

    PubMed  CAS  Google Scholar 

  60. Johnson LL (1992) SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections. Infect Immun 60(9):3719–3724

    PubMed  CAS  Google Scholar 

  61. Hunter CA et al (1995) Studies on the role of interleukin-12 in acute murine toxoplasmosis. Immunology 84(1):16–20

    PubMed  CAS  Google Scholar 

  62. Johnson LL (1992) A protective role for endogenous tumor necrosis factor in Toxoplasma gondii infection. Infect Immun 60(5):1979–1983

    PubMed  CAS  Google Scholar 

  63. Gazzinelli RT et al (1993) Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts [see comments]. Proc Natl Acad Sci USA, 90(13):6115–6119

    PubMed  CAS  Google Scholar 

  64. Chang HR, Grau GE, Pechere JC (1990), Role of TNF and IL-1 in infections with Toxoplasma gondii. Immunology 69(1):33–37

    PubMed  CAS  Google Scholar 

  65. Scharton-Kersten T et al (1997) Interferon consensus sequence binding protein-deficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J Exp Med 186(9):1523–1534

    PubMed  CAS  Google Scholar 

  66. Channon JY, Kasper LH (1996) Toxoplasma gondii-induced immune suppression by human peripheral blood monocytes: role of gamma interferon. Infect Immun 64(4):1181–1189

    PubMed  CAS  Google Scholar 

  67. McLeod R et al (1980) Effects of human peripheral blood monocytes, monocyte-derived macrophages, and spleen mononuclear phagocytes on Toxoplasma gondii. Cell Immunol 54(2):330–350

    PubMed  CAS  Google Scholar 

  68. Subauste CS, de Waal Malefyt R, Fuh F (1998) Role of CD80 (B7.1) and CD86 (B7.2) in the immune response to an intracellular pathogen. J Immunol 160(4):1831–1840

    Google Scholar 

  69. Moore KW et al (1993) Interleukin-10. Annu Rev Immunol 11:165–190

    PubMed  CAS  Google Scholar 

  70. Gazzinelli RT et al (1992) IL-10 inhibits parasite killing and nitrogen oxide production by IFN- gamma-activated macrophages. J Immunol 148(6):1792–1796

    PubMed  CAS  Google Scholar 

  71. Gazzinelli RT et al (1996) In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4- T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 157(2):798–805

    PubMed  CAS  Google Scholar 

  72. Neyer LE et al (1997) Role of interleukin-10 in regulation of T-cell-dependent and T-cell-independent mechanisms of resistance to Toxoplasma gondii. Infect Immun 65(5): 1675–1682

    PubMed  CAS  Google Scholar 

  73. Oswald IP et al (1992) IL-10 synergizes with IL-4 and transforming growth factor-beta to inhibit macrophage cytotoxic activity. J Immunol 148(11):3578–3582

    PubMed  CAS  Google Scholar 

  74. Roberts CW et al (1996) Different roles for interleukin-4 during the course of Toxoplasma gondii infection. Infect Immun 64(3):897–904

    PubMed  CAS  Google Scholar 

  75. Bermudez LE, Covaro G, Remington J (1993) Infection of murine macrophages with Toxoplasma gondii is associated with release of transforming growth factor beta and downregulation of expression of tumor necrosis factor receptors. Infect Immun 61(10): 4126–4130

    PubMed  CAS  Google Scholar 

  76. Luder CG et al (1998) Down-regulation of MHC class II molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii. Clin Exp Immunol 112(2):308–316

    PubMed  CAS  Google Scholar 

  77. McLeod R et al (1989) Genetic regulation of early survival and cyst number after per-oral Toxoplasma gondii infection of A x B/B x A recombinant inbred and B10 congenic mice. J Immunol 143(9):3031–3034

    PubMed  CAS  Google Scholar 

  78. Blackwell JM, Roberts CS, Roach TI, Alexander J (1994) Influence of macrophage resistance gene Lsh/S/Ity/Bcg (candidate NRamp on Toxoplasma gondii infection in mice). Clin Exp Immunol 97:107–112

    PubMed  CAS  Google Scholar 

  79. Capron M et al (1997) Differentiation of eosinophils from cord blood cell precursors: kinetics of Fc epsilon RI and Fc epsilon RII expression. Int Arch Allergy Immunol 113(1–3):48–50

    PubMed  CAS  Google Scholar 

  80. Lewis RA, Austen KF, Soberman RJ (1990) Leukotrienes and other products of the 5lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 323(10):645–655

    CAS  Google Scholar 

  81. Huber AR et al (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin-8 [published errata appear in Science 1991 Nov 1:254(5032):631 and 1991 Dec 6:254(5037):1435]. Science 254(5028):99–102

    PubMed  CAS  Google Scholar 

  82. Erdman SH et al (1982) Supply and release of storage neutrophils. A developmental study. Biol Neonate, 41(3–4):132–137

    CAS  Google Scholar 

  83. Anderson DC et aí.(1991) Diminished lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 on neonatal neutrophils underlies their impaired CD18-independent adhesion to endothelial cells in vitro. J Immunol 146(10): 3372–3379

    PubMed  CAS  Google Scholar 

  84. Anderson DC et al (1984) Impaired motility of neonatal PMN leukocytes: relationship to abnormalities of cell orientation and assembly of microtubules in chemotactic gradients. J Leukoc Biol 36(1):1–15

    PubMed  CAS  Google Scholar 

  85. Hill HR (1987) Biochemical, structural, and functional abnormalities of polymorphonuclear leukocytes in the neonate. Pediatr Res 22(4):375–382

    PubMed  CAS  Google Scholar 

  86. Klein RB et al (1977) Decreased mononuclear and polymorphonuclear chemotaxis in human newborns, infants, and young children. Pediatrics, 60(4):467–472

    PubMed  CAS  Google Scholar 

  87. Newburger PE (1982) Superoxide generation by human fetal granulocytes. Pediatr Res, 16(5):373–376.

    PubMed  CAS  Google Scholar 

  88. Ambruso DR et al (1984) Oxidative metabolism of cord blood neutrophils: relationship to content and degranulation of cytoplasmic granules. Pediatr Res 18(11):1148–1153

    PubMed  CAS  Google Scholar 

  89. Marshall AJ, Denkers EY (1998) Toxoplasma gondii triggers granulocyte-dependent cytokine-mediated lethal shock in D-galactosamine-sensitized mice. Infect Immun, 66(4):1325–1333

    PubMed  CAS  Google Scholar 

  90. Saito H et al (1988) Selective differentiation and proliferation of hematopoietic cells induced by recombinant human interleukins. Proc Natl Acad Sci USA, 85(7):2288–2292

    PubMed  CAS  Google Scholar 

  91. Khalife J et al (1986) Role of specific IgE antibodies in peroxidase (EPO) release from human eosinophils. J Immunol 137(5):1659–1664

    PubMed  CAS  Google Scholar 

  92. Forestier F et al (1986) Hematological values of 163 normal fetuses between 18 and 30weeks of gestation. Pediatr Res, 20(4):342–346

    PubMed  CAS  Google Scholar 

  93. Ridel PR et al (1988) Protective role of IgE in immunocompromised rat toxoplasmosis. J Immunol 141(3):978–983

    PubMed  CAS  Google Scholar 

  94. Brown CR et al (1995) Definitive identification of a gene that confers resistance against Toxoplasma cyst burden and encephalitis. Immunology 85(3):419–428

    PubMed  CAS  Google Scholar 

  95. Stanley K, Luzio P (1988) Perforin. A family of killer proteins [news]. Nature 334(6182): 475–476

    PubMed  CAS  Google Scholar 

  96. Masson D, Tschopp J (1987) A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell 49(5):679–685

    PubMed  CAS  Google Scholar 

  97. Roberts MD (1999) Thesis Department of Pathology, Glasgow

    Google Scholar 

  98. Romagnani S (1996) Thl and Th2 in human diseases. Clin Immunol 80(3 Pt 1):225–235

    CAS  Google Scholar 

  99. Gimmi CD et al (1991) B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA, 88(15): 6575–6579.

    PubMed  CAS  Google Scholar 

  100. Freeman GJ et al (1993) Murine B7–2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J Exp Med 178(6):2185–2192

    PubMed  CAS  Google Scholar 

  101. Linsley PS, Ledbetter JA (1993) The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol 11:191–212

    PubMed  CAS  Google Scholar 

  102. Kubin M, Kamoun M, Trinchieri G (1994) Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med 180(1):211–222

    PubMed  CAS  Google Scholar 

  103. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science, 248(4961):1349–1356

    PubMed  CAS  Google Scholar 

  104. Schwartz RH (1992) Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71(7):1065–1068

    PubMed  CAS  Google Scholar 

  105. Mackay CR (1993) Immunological memory. Adv Immunol 53:217–265

    PubMed  CAS  Google Scholar 

  106. Vaux DL, Strasser A (1996) The molecular biology of apoptosis. Proc Natl Acad Sci USA, 93(6):2239–2244

    PubMed  CAS  Google Scholar 

  107. Haynes BF et al (1988) Analysis of expression of CD2, CD3, and T cell antigen receptor molecules during early human fetal thymic development [published erratum appears in J Immunol 1989 Feb 15:142(4):1410]. J Immunol 141(11):3776–3784

    PubMed  CAS  Google Scholar 

  108. Davis MM (1988) Molecular genetics of T-cell antigen receptors. Hosp Pract (Off Ed) 23(5):157–164, 169–170

    Google Scholar 

  109. Schild H et al (1994) The nature of major histocompatibility complex recognition by gamma delta T cells. Cell 76(1):29–37

    PubMed  CAS  Google Scholar 

  110. George JF Jr, Schroeder HW Jr (1992) Developmental regulation of D beta reading frame and junctional diversity in T cell receptor-beta transcripts from human thymus. J Immunol 148(4):1230–1239

    PubMed  CAS  Google Scholar 

  111. Blackman M, Kappler J, Marrack P (1990) The role of the T cell receptor in positive and negative selection of developing T cells. Science 248(4961):1335–1341

    PubMed  CAS  Google Scholar 

  112. Alam SM et al (1996) T-cell-receptor affinity and thymocyte positive selection [see comments]. Nature 381(6583):616–620

    PubMed  CAS  Google Scholar 

  113. Robey EA et al (1992) The level of CD8 expression can determine the outcome of thymic selection. Cell 69(7):1089–1096

    PubMed  CAS  Google Scholar 

  114. Nossal GJ (1994) Negative selection of lymphocytes. Cell 76(2):229–239

    PubMed  CAS  Google Scholar 

  115. Kisielow P et al (1988) Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333(6175):742–746

    PubMed  CAS  Google Scholar 

  116. Kappler JW et al (1988) Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex. Nature 332(6159):35–40

    PubMed  CAS  Google Scholar 

  117. von Boehmer H, Teh HS, Kisielow P (1989) The thymus selects the useful, neglects the useless and destroys the harmful. Immunol Today 10(2):57–61

    Google Scholar 

  118. Asma GE, Van den Bergh RL, Vossen JM (1983) Use of monoclonal antibodies in a study of the development of T lymphocytes in the human fetus. Clin Exp Immunol, 53(2):429–436

    PubMed  CAS  Google Scholar 

  119. Erkeller-Yuksel FM et al (1992) Age-related changes in human blood lymphocyte sub-populations. J Pediatr 120(2 Pt 1):216–222

    PubMed  CAS  Google Scholar 

  120. De Paoli P, Battistin S, Santini GF (1988) Age-related changes in human lymphocyte subsets: progressive reduction of the CD4 CD45R (suppressor inducer) population. Clin Immunol Immunopathol 48(3):290–296

    PubMed  Google Scholar 

  121. Azuma M et al (1993) Requirements for CD28-dependent T cell-mediated cytotoxicity. J Immunol 150(6):2091–2101

    PubMed  CAS  Google Scholar 

  122. Rayfield LS, Brent L, Rodeck CH (1980) Development of cell-mediated lympholysis in human foetal blood lymphocytes. Clin Exp Immunol 42(3):561–570

    PubMed  CAS  Google Scholar 

  123. Oliver AM et al (1989) The distribution and differential expression of MHC class II antigens (HLA-DR, DP, and DQ) in human fetal adrenal, pancreas, thyroid, and gut. Transplant Proc, 21(1 Pt 1):651–652

    PubMed  CAS  Google Scholar 

  124. Harvey JE, Jones DB (1990) Distribution of LCA protein subspecies and the cellular adhesion molecules LFA-1, ICAM-1 and p150,95 within human foetal thymus. Immunology 70(2):203–209

    PubMed  CAS  Google Scholar 

  125. Khalili H, DR, Chang MY (1997) The defective antigen-presenting activity of murine fetal macrophage cell lines. Immunology 4:487–493

    Google Scholar 

  126. Hayward AR, Kurnick J (1981) Newborn T cell suppression: early appearance, maintenance in culture, and lack of growth factor suppression. J Immunol 126(1):50–53

    PubMed  CAS  Google Scholar 

  127. Wilson CB et al (1986) Decreased production of interferon-gamma by human neonatal cells. Intrinsic and regulatory deficiencies. J Clin Invest 77(3):860–867

    CAS  Google Scholar 

  128. Pirenne H et al (1992) Comparison of T cell functional changes during childhood with the ontogeny of CDw29 and CD45RA expression on CD4+ T cells. Pediatr Res 32(1): 81–86

    PubMed  CAS  Google Scholar 

  129. Lewis DB et al (1991) Cellular and molecular mechanisms for reduced interleukin 4 and interferon-gamma production by neonatal T cells. J Clin Invest 87(1):194–202

    PubMed  CAS  Google Scholar 

  130. D’Andrea A et al (1993) Interleukin 10 (IL-10) inhibits human lymphocyte interferon-gamma production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med 178(3):1041–1048

    PubMed  Google Scholar 

  131. Kos FJ, Engleman EG (1996) Immune regulation: a critical link between NK cells and CTLs. Immunol Today 17(4):174–176

    PubMed  CAS  Google Scholar 

  132. Gazzinelli R et al (1992) Simultaneous depletion of CD4+ and CD8+ T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. J Immunol 149(1): 175–180

    PubMed  CAS  Google Scholar 

  133. Gazzinelli RT et al (1991) Synergistic role of CD4+ and CD8+ T lymphocytes in IFNgamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 146(1):286–292

    PubMed  CAS  Google Scholar 

  134. Trinchieri G (1993) Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 14(7):335–338

    PubMed  CAS  Google Scholar 

  135. Montoya JG et al (1996) Human CD4+ and CD8+ T lymphocytes are both cytotoxic to Toxoplasma gondii-infected cells. Infect Immun 64(1):176–181

    PubMed  CAS  Google Scholar 

  136. Brown C, ER, McLeod R (1995) Fate of an intracellular parasite during lysis of its host cell by CD8+ lymphocytes. Keystone meeting, Keystone, CO

    Google Scholar 

  137. Nash PB et al (1998) Toxoplasma gondii-infected cells are resistant to multiple inducers of apoptosis. J Immunol 160(4):1824–1830

    PubMed  CAS  Google Scholar 

  138. Huldt (1973) Effect of Toxoplasma gondii on the thymus. Nature 244(5413): 301–303

    PubMed  CAS  Google Scholar 

  139. McLeod R et al (1984) Immune response of mice to ingested Toxoplasma gondii: a model of toxoplasma infection acquired by ingestion. J Infect Dis 149(2):234–244

    PubMed  CAS  Google Scholar 

  140. Hohfeld PF, Marion S, Thulliez P, Marcon P, Daffos F (1990) Toxoplasma gondii infection during pregnancy: T lymphocyte subpopulations in mothers and fetuses. Pedatr Infect Dis J 9:878–881

    Google Scholar 

  141. Lecolier B et al (1989) T-cell subpopulations of fetuses infected by Toxoplasma gondii [letter]. Eur J Clin Microbiol Infect Dis 8(6):572–573

    PubMed  CAS  Google Scholar 

  142. Foulon W et al (1990) Detection of congenital toxoplasmosis by chorionic villus sampling and early amniocentesis. Am J Obstet Gynecol 163(5 Pt 1):1511–1513

    PubMed  CAS  Google Scholar 

  143. Subauste CS et al (1998) Alpha beta T cell response to Toxoplasma gondii in previously unexposed individuals. J Immunol 160(7):3403–3411

    PubMed  CAS  Google Scholar 

  144. McLeod R et al (1990) Phenotypes and functions of lymphocytes in congenital toxoplasmosis. J Lab Clin Med 116(5):623–635

    PubMed  CAS  Google Scholar 

  145. Hara T et al (1996) Human V delta 2+ gamma delta T-cell tolerance to foreign antigens of Toxoplasma gondii. Proc Natl Acad Sci USA, 93(10):5136–5140

    PubMed  CAS  Google Scholar 

  146. Mack DM, Holfels E, McLeod R (1999) Immune Responses in human congenital toxoplasmosis. (in preparation).

    Google Scholar 

  147. Raymond J et al (1990) Presence of gamma interferon in human acute and congenital toxoplasmosis [published erratum appears in J Clin Microbiol 1990 28(12):2853]. J Clin Microbiol 28(6):1434–1437

    PubMed  CAS  Google Scholar 

  148. Alexander J et al (1998) The role of IL-4 in adult acquired and congenital toxoplasmosis. Int J Parasitol 28(1):113–120

    PubMed  CAS  Google Scholar 

  149. Wegmann TG et al (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? [see comments]. Immunol Today 14(7):353–356

    PubMed  CAS  Google Scholar 

  150. Alexander J et al (1997) Mechanisms of innate resistance to Toxoplasma gondii infection. Philos Trans R Soc Lond B Biol Sci 352(1359):1355–1359

    PubMed  CAS  Google Scholar 

  151. Piccinni MP et al (1995) Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Thl cell clones. J Immunol 155(1):128–133

    PubMed  CAS  Google Scholar 

  152. Gazzinelli RT, Denkers EY, Sher A (1993) Host resistance to Toxoplasma gondii: model for studying the selective induction of cell-mediated immunity by intracellular parasites. Infect Agents Dis 2(3):139–149

    PubMed  CAS  Google Scholar 

  153. Suzuki Y, Remington JS (1990) The effect of anti-IFN-gamma antibody on the protective effect of Lyt- 2+ immune T cells against toxoplasmosis in mice. J Immunol 144(5): 1954–1956

    PubMed  CAS  Google Scholar 

  154. Yano A et al (1989) Antigen presentation by Toxoplasma gondii-infected cells to CD4+ proliferative T cells and CD8+ cytotoxic cells. J Parasitol 75(3):411–416

    PubMed  CAS  Google Scholar 

  155. Parker SJ, Roberts CW, Alexander J (1991) CD8+ T cells are the major lymphocyte sub-population involved in the protective immune response to Toxoplasma gondii in mice. Clin Exp Immunol 84(2):207–212

    PubMed  CAS  Google Scholar 

  156. Purner MB et al (1996) CD4-mediated and CD8-mediated cytotoxic and proliferative immune responses to Toxoplasma gondii in seropositive humans. Infect Immun 64(10): 4330–4338

    PubMed  CAS  Google Scholar 

  157. Black CM et al (1989) Effect of recombinant tumour necrosis factor on acute infection in mice with Toxoplasma gondii or Trypanosoma cruzi. Immunology 68(4):570–574

    PubMed  CAS  Google Scholar 

  158. Sullender WM et al (1987) Humoral and cell-mediated immunity in neonates with herpes simplex virus infection [published erratum appears in J Infect Dis 155(4):838]. J Infect Dis 155(1):28–37

    PubMed  CAS  Google Scholar 

  159. Gehrz RC et al (1987) HLA class II restriction of T helper cell response to cytomegalovirus (CMV). I. Immunogenetic control of restriction. J Immunol 138(10):3145–3151

    CAS  Google Scholar 

  160. Lang T et al (1994) Leishmania donovani-infected macrophages: characterization of the parasitophorous vacuole and potential role of this organelle in antigen presentation. J Cell Sci 107(Pt 8):2137–2150

    PubMed  CAS  Google Scholar 

  161. Saha B et al (1994) Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur J Immunol 24(11):2618–2624

    CAS  Google Scholar 

  162. Himeno K, Hisaeda H (1996) Contribution of 65-kDa heat shock protein induced by gamma and delta T cells to protection against Toxoplasma gondii infection. Immunol Res 15(3):258–264

    PubMed  CAS  Google Scholar 

  163. Moore KJ, Matlashewski G (1994) Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol 152(6):2930–2937

    PubMed  CAS  Google Scholar 

  164. Huskinson J et al (1989) Toxoplasma antigens recognized by immunoglobulin G subclasses during acute and chronic infection. J Clin Microbiol 27(9):2031–2038

    PubMed  CAS  Google Scholar 

  165. Noelle RJ, Ledbetter JA, Aruffo A (1992) CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol Today 13(11):431–433

    PubMed  CAS  Google Scholar 

  166. Clark EA, Lane PJ (1991) Regulation of human B-cell activation and adhesion. Annu Rev Immunol 9:97–127

    PubMed  CAS  Google Scholar 

  167. Gathings WE, Lawton AR, Cooper MD (1977) Immunofluorescent studies of the development of pre-B cells, B lymphocytes and immunoglobulin isotype diversity in humans. Eur J Immunol 7(11):804–810

    PubMed  CAS  Google Scholar 

  168. Yellen AJ et al (1991) Signaling through surface IgM in tolerance-susceptible immature murine B lymphocytes. Developmentally regulated differences in transmembrane signaling in splenic B cells from adult and neonatal mice. J Immunol 146(5):1446–1454

    CAS  Google Scholar 

  169. DeBiagi M, Andreani M, Centis F (1985) Immune characterization of human fetal tissues with monoclonal antibodies. Prog Clin Biol Res 193:89–94

    PubMed  CAS  Google Scholar 

  170. Kohler PF, Farr RS (1966) Elevation of cord over maternal IgG immunoglobulin: evidence for an active placental IgG transport. Nature 210(40):1070–1071

    PubMed  CAS  Google Scholar 

  171. Burgio GR et al (1980) Ontogeny of secretory immunity: levels of secretory IgA and natural antibodies in saliva. Pediatr Res 14(10):1111–1114

    PubMed  CAS  Google Scholar 

  172. Andersson U et al (1981) Humoral and cellular immunity in humans studied at the cell level from birth to two years of age. Immunol Rev 57:1–38

    PubMed  CAS  Google Scholar 

  173. Splawski JB, Lipsky PE (1991) Cytokine regulation of immunoglobulin secretion by neonatal lymphocytes. J Clin Invest 88(3):967–977

    PubMed  CAS  Google Scholar 

  174. McLeod R et al (1988) Subcutaneous and intestinal vaccination with tachyzoites of Toxoplasma gondii and acquisition of immunity to peroral and congenital toxoplasma challenge. J Immunol 140(5):1632–1637

    PubMed  CAS  Google Scholar 

  175. Blackwell JM (1998) Genetics of host resistance and susceptibility to intramacrophage pathogens: a study of multicase families of tuberculosis, leprosy and leishmaniasis in north-eastern Brazil. Int J Parasitol 28(1):21–28

    PubMed  CAS  Google Scholar 

  176. Roberts F.a.R.M. (1999) Pathogenesis of Toxoplasmic Retinochoroiditis. Parasitology Today 15(2):51–57

    PubMed  CAS  Google Scholar 

  177. Suzuki Y (1997) Cells and cytokines in host defense of the central nervous system. In: Peterson R (ed) In Defense of the Brain, Blackwell Science, Malden, 56–73

    Google Scholar 

  178. Montoya G, Remington JS (1997) Toxoplasmosis of the Central Nervous System. In: Peterson R (ed). In Defense of the Brain. Blackwell Science, Malden, pp. 163–188

    Google Scholar 

  179. Hill AVS, Willis AC, Aidoo M, Allsopp CE, Gotch FM, Gai XM, Takiguchi M, Greenwood BM, Townsend AR (1992) Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360:434–439

    PubMed  CAS  Google Scholar 

  180. McLeod R, Arbuckle D, Skamene E (1995) Immunogenetics in the analysis of resistance to intracellular pathogens. Curr Opin Immunol 7:539–552

    PubMed  CAS  Google Scholar 

  181. Bodner JG, Albert ED, Bodmer WF, Dupont B, Erlich HD, Mach B, Mayr WR, Patnam P, Sasazuld T (1994) Nomenclature report: nomenclature for factors of the HLA system. Tissue Antigens 44:1–18

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag France

About this paper

Cite this paper

McLeod, R., Dowel, M. (2000). Basic immunology: the fetus and the newborn. In: Ambroise-Thomas, P., Petersen, P.E. (eds) Congenital toxoplasmosis. Springer, Paris. https://doi.org/10.1007/978-2-8178-0847-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0847-5_4

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-59664-3

  • Online ISBN: 978-2-8178-0847-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics