Skip to main content

Histology of vessels

  • Chapter

Abstract

The cardiovascular system consists of four main types of vessel: arteries, veins, capillaries and the less well defined sinusoids. No vessel (small or large) should be seen as a simple conduit; all have distinct functional characteristics, which, in turn, will affect organ function profoundly, and their structure is modified by the functional demands they must satisfy. As an arbitrary definition we can say that any vessel whose diameter is larger than 250 to 300 lam and visible to the naked eye belongs to the macrocirculation and that the microcirculation is made up of vessels measuring less than 250 μm in diameter [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Krause WJ, Cutts JH (1981) Concise text of histology. Williams & Wilkins, Baltimore, London p. 429

    Google Scholar 

  2. Romanov YA, Balyasnikova IV, Bystrevskaya VB, Byzova TV, Ilyinskaya OP, Krushinky AV, Latsis RV, Soboleva EL, Tararak EM, Smirnov VN (1995) Endothelial heterogeneity and intimal blood-borne cells. Relation to human atherosclerosis In Numano F, Wissler RW (eds.) Atherosclerosis III. Recent advances in atherosclerosis research. The 3rd Saratoga international conference on atherosclerosis in Nekoma. Ann NewYork Acad (vol 748) p. 12

    Google Scholar 

  3. Takamizawa K, Hayashi K (1988) Uniform strain hypothesis and thin-walled theory in arterial mechanics. Biorheology 25: 555–65

    PubMed  CAS  Google Scholar 

  4. Hayashi KK, Ide K, Matsumoto T (1994) Aortic walls in atherosclerotic rabbits — mechanical study. J Biomech Eng 116: 284–93

    Article  PubMed  CAS  Google Scholar 

  5. Dobrin PB (1983) Handbook of Physiology — The Cardiovascular System III (Am Physiol Soc, Bethesda, 1983), Chap 3, pp. 65–102

    Google Scholar 

  6. Han HC, Fung YC (1995) Longitudinal strain of canine and porcine aortas. J Biomech 28: 637–41

    Article  PubMed  CAS  Google Scholar 

  7. Sato M, Hayashi K, Niimi H, Moritake K, Okumura A, Handa H (1979) Axial mechanical properties of arterial walls and their anisotropy. Med Biol Eng Comput 17: 170–6

    Article  PubMed  CAS  Google Scholar 

  8. Fronek K, Fung YC (1980) Mechanical properties of arteries as a function of topography and age. Biorheology 17: 227–34

    PubMed  CAS  Google Scholar 

  9. Vito RP (1980) Mechanical properties of soft tissues — I: a mechanical system for biaxial testing. J Biomech 13: 947–50

    Article  PubMed  CAS  Google Scholar 

  10. Humphrey JD, Kang T, Sakarda P, Anjanappa M (1993) Computer aided vascular experimentation: a new electromechanical test system. Ann Biomed Eng 21: 33–43

    Article  PubMed  CAS  Google Scholar 

  11. Halpern W, Osol G, Coy GS (1984) Mechanical behaviour of pressurised in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng. 12: 463–79

    Article  PubMed  CAS  Google Scholar 

  12. Weizsaecker HW, Pinto JG (1988) Isotropy and anisotropy of the arterial wall J Biomech 21: 477–87

    Article  Google Scholar 

  13. Carmines DV, McElhaney JH, Stack R (1991) A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. J Biomech 24: 899–906

    Google Scholar 

  14. Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals Circ Res 20: 99–111

    CAS  Google Scholar 

  15. Hayashi KK, Sato M, Handa H, Moritake K (1974) Exp Mech 14: 440–4

    Article  Google Scholar 

  16. Papageorgiou GL, Jones NB (1985). Photoelectric transducer for measuring the length and diameter of elastic vessels. J Biomed Eng 7: 295–300

    Article  PubMed  CAS  Google Scholar 

  17. Brant AM, Shah SS, Rodgers VGJ, Hoffmeister J, Herman I, Kormos RL, Borovetz HS (1988) Biomechanics of the arterial wall under simulated flow conditions J Biomech 21: 107–13

    Google Scholar 

  18. Newman DL, Gosling RG, Bowden NLR (1971) Changes in aortic distensibility and area ratio with the development of atherosclerosis. Atherosclerosis 14: 231–40

    Article  PubMed  CAS  Google Scholar 

  19. Pagani M, Mirsky I, Baig H, Manders WT, Kerkhof P, Vatner SF (1979) Effects of age on aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep. Circ Res 44: 420–9

    Article  PubMed  CAS  Google Scholar 

  20. Gross DR, Hwang NHC (1981) The Rheology of Blood, Blood Vessels and Associated Tissues. Sijthoff and Noordoff, Alphen aan den Rijn, The Netherlands, pp.319–36

    Google Scholar 

  21. Gentile BJ, Chuong CJC, Ordway GA (1988) Regional volume distensibility of canine aorta during treadmill 36. exercise. Circ Res 63: 1012–19

    Article  PubMed  CAS  Google Scholar 

  22. Langewouters GL, Wesseling KH, Goedhard WJA (1981) Advances in Physiological Sciences, Vol. 8 Cardiovascular Physiology, Heart, Peripheral Circulation and 37. Methodology (Akademiai Kiado, Budapest, and Pergamon, Oxford ), pp. 271–81

    Google Scholar 

  23. Janzen J, Lanzer P, Rothenberger-Janzen K, Vuong PN (2000) The transitional zone in the tunica media of renal 38. arteries has a maximal length of 10 millimetres. Vasa 29: 168–72

    Article  PubMed  CAS  Google Scholar 

  24. Watkins MT, Sharefkin JB, Zajtchuk R, Maciag TM, D’Amore PA, Ryan US, Van Wart H, Rich NM (1984) 39. Adult human saphenous vein endothelial cells: assessment of their reproductive capacity for use in endothelial seeding of vascular prostheses. J Surg Res 36: 588–96 40.

    Google Scholar 

  25. Lefebvre D, Lescalie F (1996) Vascularization of the wall of the superficial veins. Anatomic study of the vasa vaso-rum. J Mal Vasc 21: S245 - S48

    Google Scholar 

  26. Butterworth DM, Rose SS, Clark P, Rowland P, Knight S, 41. Haboubi NY (1992) Light microscopy, immunohistochemistry and electron microscopy of the valves of the lower limb veins and jugular veins. Phlebology 7: 27–30

    Google Scholar 

  27. Colby TV, Yousem SA (1991) Lungs In Sternberg SS 42. (ed) Histology for pathologists. Raven Press, New York 479–97

    Google Scholar 

  28. Fawcett DW (1986) Bloom and Fawcett, A textbook of 43. histology. WB Saunders Company, Philadelphia, London, Toronto, Mexico City, Rio de Janeiro, Sydney, Tokyo, HongKong, 1017 p.

    Google Scholar 

  29. Widdicombe J (1997) Microvascular anatomy of the 44. nose. Allergy 52: S7 - S11

    Article  Google Scholar 

  30. Lie JT (1980) The structure of the normal vascular system and its reactive changes. In Juergens JL, Spittell JA, Fairbairn II JF (ed) Peripheral vascular diseases. 45. Saunders, Philadelphia, London, Toronto 51–81

    Google Scholar 

  31. Czyba JC, Girod C (1970) Cours d’histologie et embryologie (tome 1). Siemp, Lyon p. 230 46.

    Google Scholar 

  32. Simionescu N, Simionescu M (1977) The cardiovascular system In Weiss L, Greep RO (eds.) Histology. Mac Graw-Hill, New York pp 373–431 47.

    Google Scholar 

  33. Cuevas P, Gutierrez-Diaz JA, Reimers D, Dujovny M, Diaz FG, Ausman JI (1984) Pericyte endothelial gap junc- 48. tions in human cerebral capillaries. Anat Embryol (Berl) 170: 155–9

    Article  CAS  Google Scholar 

  34. Stelzner F, Staubesand J, Machleidt H (1962) Das corpus cavernosum recti — die Grundlage der inneren hämor- 49. rhoiden. Langenbecks Arch Klin Chir 299: 302–12

    CAS  Google Scholar 

  35. Datsun IG, Mel’man EP (1992) Role of glomus shunts of the anorectal cavernous bodies in the mechanism of hemorrhoid development. Arkh Patol 54: 28–31

    Google Scholar 

  36. Passau D, Buccella MG, Vetuschi A, Bellussi L (1990) Arteriovenous anastomosis in nasal cavities using micro-corrosion technique. Acta Otorhinolaryngol Ital 10: 45363

    Google Scholar 

  37. Skladzien J, Litwin JA, Nowogrodzka-Zagorska N, Miodonski AJ (1995) Corrosion casting study on the vasculature of nasal mucosa in the human fetus. Anat Rec 242: 411–6

    Article  Google Scholar 

  38. Krantz KE (1977) The anatomy and physiology of the vulva and vagina In Philipp EE, Barnes J, Newton M eds. Scientific foundation of obstetrics and gynaecology, 2nd ed. Heinemann, London p 65–78

    Google Scholar 

  39. Benson SG, McConnell JA, Schmists WA (1981) Penile polsters: Functional structures or atherosclerotic changes? J Urol 125: 800–3

    Google Scholar 

  40. Furchgott RF (1996) The 1996 Albert Lasker Medical Research Awards. The discovery of endothelium-derived relaxing factor and its importance in the identification of nitric oxide. JAMA 276: 1186–8

    Article  Google Scholar 

  41. Choi YD, Mah SY, Xin ZC, Choi HK (1997) The distribution of nitric oxide synthase in human corpus cavernosum on various impotent patients. Yonsei Med J 38: 125–32

    Google Scholar 

  42. Sick H, Wolfram-Gabel R (1993) Vascular networks of the periphery of the finger nail. Arch Anat Histol Embryol 75: 47–60

    Google Scholar 

  43. Kasper M, Golfert F, Funk RH (1997) Immunoelectron microscopical characterization of the epithelioid type of smooth muscle cells in human glomus organs. Ultrastruct Pathol 21: 425–30

    Article  Google Scholar 

  44. Stark RB, Kaplan JM, Kittredge RD (1984) Lymphedema In Haimovici H: Vascular surgery, Principles and techniques. Appleton-Century-Crofts, Norwalk, Connecticut pp. 1071–84

    Google Scholar 

  45. Witte MH, Witte CL (1987) Lymphatics and blood vessels, lymphangiogenesis and hemangiogenesis: from cell biology to clinical medicine. Lymphology 20: 257–66

    Google Scholar 

  46. Petersen W, Tillmann B (1995) Age-related blood and lymph supply of the knee menisci. A cadaver study. Acta Orthop Scand 66: 308–12

    Google Scholar 

  47. Gruffaz J (1984) Anatomy and physiology of the lymphatic system. Phlebologie 37: 189–93

    PubMed  Google Scholar 

  48. Puckett CL, Silver D (1984) Complications of lymphadenectomy and lymphedema In Greenfield LJ (ed): Complications in surgery and trauma. JB Lippincott Company Philadelphia pp 91–101

    Google Scholar 

  49. Borisov AV, Anichkov NM (1992) Lymphangion in health and in lymphedema. Arkh Patol 54: 27–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag France

About this chapter

Cite this chapter

Vuong, P.N., Berry, C. (2002). Histology of vessels. In: The Pathology of Vessels. Springer, Paris. https://doi.org/10.1007/978-2-8178-0786-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0786-7_1

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0788-1

  • Online ISBN: 978-2-8178-0786-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics