Skip to main content

Steady and Unsteady Fluid Shear Control of Atherosclerosis

  • Chapter
Molecular Basis for Microcirculatory Disorders

Abstract

Atherosclerosis remains a leading cause of morbidity and mortality in the Western world (115, 126). It is a chronic systemic disease attributed to many well-identified risk factors (i.e. diabetes mellitus, hyperlipidemia, hypercholesteremia, hypertension, and cigarette smoking). Yet the formation of atherosclerotic lesions do not occur in a random fashion. The coronary arteries, the major branches of the aortic arch, and the abdominal aorta are particularly susceptible sites. Given the focal nature of plaque formation within these regions, it has long been suggested that certain characteristics of fluid shear stress unique to these regions may potentiate the early stages of atherogenesis independent of other risk factors. Detailed analyses of fluid mechanics in atherosclerosis-susceptible regions of the vasculature reveal a strong correlation between endothelial cell dysfunction and areas of low mean shear stress and oscillatory flow with flow recirculation. Conversely, steady shear stress stimulates cellular responses that are essential for endothelial cell function and are atheroprotective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference List

  1. Akimoto S, Mitsumata M, Sasaguri T, Yoshida Y(2000) Laminar Shear Stress Inhibits Vascular Endothelial Cell Proliferation by Inducing Cyclin-dependent Kinase Inhibitor p21s“” ‘P“” i’ Cir. Res. 86: 185–90.

    Google Scholar 

  2. Albuquerque ML, Waters CM, Savla U, Schnaper HW, Flozak AS (2000) Shear Stress Enhances Human Endothelial Cell Wound Closure in vitro. Am. J. Physiol. Heart. Circ. Physiol. 279: H293–302.

    PubMed  CAS  Google Scholar 

  3. Andries LJ, Brutsaert DL, Sys SU (1998) Nonuniformity of Endothelial Constitutive Nitric Oxide Synthase Distribution in Cardiac Endothelium. Circ. Res. 82: 195–203.

    Google Scholar 

  4. Arnal JF, Dinh-Xuan AT, Pueyo M, Darblade B, Rami J (1999) Endothelium-derived Nitric Oxide and Vascular Physiology and Pathology. Cell. Mol. Life Sci. 55: 1078–87.

    Google Scholar 

  5. Ayajiki K, Kindermann M, Hecker M, Fleming I, Busse R (1996) Intracellular pH and Tyrosine Phosphorylation but not Calcium Determine Shear Stress-induced Nitric Oxide Production in Native Endothelial Cells. Circ. Res. 78: 750–58.

    Google Scholar 

  6. Bakker SJ, Gans RO(2000) About the Role of Shear Stress in Atherogenesis. Cardiovasc. Res. 45: 270–72.

    Google Scholar 

  7. Bao X, Lu C, Frangos JA (1999) Temporal Gradient in Shear but not Steady Shear Stress Induces PDGF-A and MCP-1 Expression in Endothelial Cells: Role of NO, NF Kappa B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19: 996–1003.

    Google Scholar 

  8. Bao X, Clark CB, Frangos JA (2000) Temporal Gradient in Shear-induced Signalling Pathway-Involvement of MAP Kinase, c-fos and Connexin-43. Am J Physiol Heart Circ Physiol. 278:H 1598-H 1605.

    Google Scholar 

  9. Bao X, Lu C, Frangos JA (2001) Mechanism of Temporal Gradients in Shear-induced ERK1/2 Activation and Proliferation in Endothelial Cells. (2001) Am. J. Physiol. Heart. Circ. Physiol. 281: H22 - H29.

    PubMed  CAS  Google Scholar 

  10. Barbee KA, Davies PF, Lal R (1994) Shear Stress-induced Reorganization of the Surface Topography of Living Endothelial Cells Imaged by Atomic Force Microscopy. Circ. Res. 74: 163–71.

    Google Scholar 

  11. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular Distribution of Shear Stress at the Surface of Flow-aligned and Nonaligned Endothelial Monolayers. Am. J. Physiol. 268: H1765–72.

    PubMed  CAS  Google Scholar 

  12. Beece D, Eisenstein L, Frauenfelder H, Good D, Marden MC, Reinisch L, Reynolds AH, Sorensen LB, Yue KT (1980) Solvent Viscosity and Protein Dynamics. Biochemistry. 19: 5147–57.

    Article  PubMed  CAS  Google Scholar 

  13. Berk BC, Corson MA, Peterson TE, Tseng H (1995) Protein Kinases as Mediators of Fluid Shear Stress Stimulated Signal Transduction in Endothelial Cells: A Hypothesis for Calcium-dependent and Calcium-independent Events Activated by Flow. J. Biomech. 28: 1439–50.

    Google Scholar 

  14. Berk BC, Duff JL, Marrero MB, Bernstein KE Angiotensin II Signal Transduction in Vascular Smooth Muscle. In: Sowers JR, ed. Endocrinology of the Vasculature. Totowa, New Jersey: Humana Press. 1996: 187–204.

    Chapter  Google Scholar 

  15. Berthiaume F, Frangos JA (1992) Flow-induced Prostacyclin Production is Mediated by a Pertussis Toxin-sensitive G-Protein. FEBS Letters. 30: 277–9.

    Article  Google Scholar 

  16. Berthiaume F, Frangos JA (1994) Flow Effects on Endothelial Cell Signal Transduction, Function, and Mediator Release. In: Flow-dependent Regulation of Vascular Function, edited by Bevan J, Kaley G, and Rubanyi G. New York: Oxford Univ. Press.

    Google Scholar 

  17. Bhagyalakshmi A, Frangos JA (1989) Mechanism of Shear-induced Prostacyclin Production in Endothelial Cells. Biochem. Biophys. Res. Commun. 158: 31–7.

    Google Scholar 

  18. Blackman BR, Thibault LE, Barbee KA. Selective Modulation of Endothelial Cell [Ca2+] i Response to Flow by the Onset Rate of Shear Stress. J. Biomech. Eng. 2000 Jun; 122 (3): 274–82.

    Article  PubMed  CAS  Google Scholar 

  19. Bomberger RA, Zarins CK, Taylor KE, Glagov S (1980) Effect of Hypotension on Atherogenesis and Aortic Wall Composition. J. Surg. Res. 28: 402–9.

    Google Scholar 

  20. Boulanger C, Luscher TF (1990) Release of Endothelin from the Porcine Aorta. Inhibition by Endothelium-derived Nitric Oxide. J. Clin. Invest. 85: 587–90.

    Google Scholar 

  21. Britten MB, Zeiher AM, Schachinger V (1999) Clinical Importance of Coronary Endothelial Vasodilator Dysfunction and Therapeutic Options. J. Intern. Med. 245: 315–27.

    Google Scholar 

  22. Caplan BA, Schwartz CJ (1973) Increased Endothelial Cell Turnover in Areas of in vivo Evans Blue Uptake in the Pig Aorta. Atherosclerosis. 17: 401–12.

    Article  PubMed  CAS  Google Scholar 

  23. Chiu JJ, Wang DL, Chien S, Skalak R, Usami S (1998) Effects of Disturbed Flow on Endothelial Cellls. J. Biomech. Eng. 120: 2–8.

    Google Scholar 

  24. Corson MA, Berk BC (1993) Growth Factors and the Vessel Wall. Heart Dis. Stroke. 2: 166–70.

    Google Scholar 

  25. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG (1996) Phosphorylation of Endothelial Nitric Oxide Synthase in Response to Fluid Shear Stress. Circ. Res. 79: 984–91.

    Google Scholar 

  26. Cosentino F, Katusic ZS (1995) Tetrahydrobiopterin and Dysfunction of Endothelial Nitric Oxide Synthase in Coronary Arteries. Circulation. 91: 139–44.

    Article  PubMed  CAS  Google Scholar 

  27. Davies PF (1995) Flow-mediated Endothelial Mechanotransduction. Physiol. Rev. 75: 519–560.

    PubMed  CAS  Google Scholar 

  28. Davies PF (2000) Spatial Hemodynamics, the Endothelium. and Focal Atherogenesis: A Cell Cycle Link? Circ. Res. 86: 114–6.

    CAS  Google Scholar 

  29. DeBakey ME, Lawrie GM, Glaeser DH (1985) Patterns of Atherosclerosis and Their Surgical Significance. Ann. Surg. 201: 115–31.

    Google Scholar 

  30. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, Shin WS, Liao JK(1995) Nitric Oxide Decreases Cytokine-induced Endothelial Activation. Nitric Oxide Selectively Reduces Endothelial Expression of Adhesion Molecules and Proinflammatory Cytokines. J. Clin. Invest. 96: 60–8.

    Google Scholar 

  31. De Keulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander RW, Griendling KK (1998) Oscillatory and Steady Laminar Shear Stress Differentially Affect Human Endothelial Redox State: Role of a Superoxide-producing NADH Oxidase. Circ. Res. 82: 1094–101.

    Google Scholar 

  32. DePaola N, Gimbrone MA, Davies PF, Dewey CF (1992) Vascular Endothelium Responds to Fluid Shear Stress Gradients Arterioscler Thromb. 12: 1254–57.

    Article  CAS  Google Scholar 

  33. DePaola N, Davies PF, Pritchard WF, Florez L, Harbeck N, Polacek DC (1999) Spatial and Temporal Regulation of Gap Junction Connexin43 in Vascular Endothelial Cells Exposed to Controlled Disturbed Flows in vitro. Proc. Natl. Acad. Sci. U.S.A. 96: 3154–9.

    Google Scholar 

  34. de Weerd WF, Leeb-Lundberg LM (1997) Bradykinin Sequesters B2 Bradykinin Receptors and the Receptor-coupled Galpha Subunits Galphaq and Galphai in Caveolae in DDT1 MF-2 Smooth Muscle Cells. J. Biol. Chem. 272: 17858–66.

    Google Scholar 

  35. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress. J. Biomech. Eng. 103: 177–85.

    Google Scholar 

  36. Dimmeler S, Hermann C, Galle J, Zeiher AM (1999) Upregulation of Superoxide Dismutase and Nitric Oxide Synthase Mediates the Apoptosis-suppressive Effects of Shear Stress on Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 19: 656–64.

    Google Scholar 

  37. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of Nitric Oxide Synthase in Endothelial Cells by Akt-dependent Phosphorylation. Nature. 399: 601–5.

    Article  PubMed  CAS  Google Scholar 

  38. Durst F, Pereira JCF (1988) Time-dependent Laminar Backward-facing Step Flow in a Two-dimensional Duct. Journal of Fluids Engineering. 110: 289–96.

    Article  Google Scholar 

  39. Dusserre N, L’Heureux N, Frangos JA. PECAM-1 (CD31) Interacts with Nitric-oxide Synthase in Human Endothelial Cells. Implication for Flow-induced Nitric-oxide Synthase Activation (in submission).

    Google Scholar 

  40. Finkel T (1998) Oxygen Radicals and Signalling. Curr. Opin. Cell. Biol. 10: 248–53.

    Article  PubMed  CAS  Google Scholar 

  41. Flaherty JT, Pierce JE, Ferrans VJ, Patel DJ, Tucker WK, Fry DL (1972) Endothelial Nuclear Patterns in the Canine Arterial Tree with Particular Reference to Hemodynamic Events. Circ. Res. 30: 23–33.

    Google Scholar 

  42. Frangos JA, Eskin SG, McIntire LY, Ives CL (1985) Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells. Science. 227: 1477–9.

    Article  PubMed  CAS  Google Scholar 

  43. Frangos JA, Huang TY, Clark CB (1996) Steady Shear and Step Changes in Shear Stimulate Endothelium via Independent Mechanisms-superposition of Transient and Sustained Nitric Oxide Production. Biochem. Biophys. Res. Commun. 224: 660–5.

    Google Scholar 

  44. Frangos SG, Gahtan V, Sumpio B (1999) Localization of Atherosclerosis: Role of Hemodynamics. Arch. Surg. 134: 1142–9.

    Google Scholar 

  45. Fry DL (1968) Acute Vascular Endothelial Changes Associated with Incresed Blood Velocity Gradients. Circ. Res. 22: 165–92.

    Article  PubMed  CAS  Google Scholar 

  46. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC (1999) Regulation of Endothelium-derived Nitric Oxide Production by the Protein Kinase Akt. Nature 399 6736 597–601 [published erratum appears in Nature 1999 Aug 19; 400 (6746):792].

    Google Scholar 

  47. Furchgott RF, Zawadzki JV (1980) The Obligatory Role of Endothelial Cells in the Relaxation of Arterial Smooth Muscle by Acetylcholine. Nature. 288: 373–6.

    Article  PubMed  CAS  Google Scholar 

  48. Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of Nitric Oxide Synthase to Endothelial Cell Caveolae via Palmitoylation: Implications for Nitric Oxide Signalling. Proc. Natl. Acad. Sci U.S.A. 93: 6448–5643.

    Google Scholar 

  49. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997)Dissecting the Interaction between Nitric Oxide Synthase (NOS) and Caveolin. Functional Significance of the Nos Caveolin Binding Domain in vivo. J. Biol. Chem. 272: 25437–4340.

    Google Scholar 

  50. Ghosh S, Gachhui R, Crooks C, Wu C, Lisanti MP, Stuehr DJ (1998) Interaction Between Caveolin1 and the Reductase Domain of Endothelial Nnitric-oxide Synthase. Consequences for Catalysis. J. Biol. Chem. 273: 22267–71.

    Google Scholar 

  51. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH (1993) Relation of Vessel Wall Shear Stress to Atherosclerosis Progression in Human Coronary Arteries. Arterioscler. Thromb. 13: 310–5.

    Google Scholar 

  52. Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and Atherosclerosis: Insights and Perspectives Gained from Studies of Human Arteries. Arch. Pathol. Lab. Med. 112: 1018–31.

    Google Scholar 

  53. Govers R, Rabelink TJ. Cellular Regulation of Endothelial Nitric Oxide Synthase. (2001) Am. J. Physiol. Renal. Physiol. 280: F193 - F206.

    PubMed  CAS  Google Scholar 

  54. Grabowski EF, Jaffe EA, Weksler BB (1985) Prostacyclin Production by Cultured Endothelial Cell Monolayers Exposed to Step Increases in Shear Stress. J. Lab. Clin. Med. 105: 36–43.

    Google Scholar 

  55. Griendling KK, Minieri CA, Oerenshaw JD, Alexander RW (1994) Angiotensin II Stimulates NADH and NADPH Oxidase Activity in Cultured Vascular Smooth Muscle Cells. Circ. Res. 74: 1141–8.

    Google Scholar 

  56. Gudi SRP, Clark CB, Frangos JA (1996) Fluid Flow Rapidly Activates G Proteins in Human Endothelial Cells. Circulation Research, 79: 834–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gudi SRP, Nolan JP, Frangos JA (1998) Modulation of GTPase Activity of Reconstituted G Proteins by Fluid Shear Stress and Phospholipid Composition. Proc. Natl. Acad. Sci. U.S.A. 95: 2515–9.

    Google Scholar 

  58. Haidekker M, L’Heureux N, Frangos JA (2000) Fluid Shear Stress Increases Membrane Fluidity In Endothelial Cells: A Study with DCVJ Fluorescence. Am. J. Physiol. 278: H1401–6.

    CAS  Google Scholar 

  59. Haidekker M, Ling T, Anglo M„ Stevens HY, Frangos JA, Theodorakis EA (2000) New Fluorescent Probes for the Measurement of Cell Membrane Viscosity. Chemistry and Biology 8: 123–31.

    Article  Google Scholar 

  60. Haidekker M, White CR L’Heureux N, Frangos JA (2001) Analysis of Temporal Shear Stgress Gradients during the Onset Phase of Flow over a Backward-facing Step. Implications on Endothelia Cell Proliferation. In press at J. Biomech. Eng.

    Google Scholar 

  61. Hanada T, Hashimoto M, Nosaka S, Sasaki T, Nakayama K, Masumura S, Yamauchi M, Tamura K (2000) Shear Stress Enhances Prostacyclin Release from Endocardial Endothelial Cells. Life Sci. 66: 215–20.

    Article  PubMed  CAS  Google Scholar 

  62. Harrison DG (1997) Cellular and Molecular Mechanisms of Endothelial Cell Dysfunction. J. Clin. Invest. 100: 2153–7.

    Article  PubMed  CAS  Google Scholar 

  63. Hazel AL, Pedley TJ Alteration of Mean Wall Shear Stress Near an Ooscillation Stagnation Point. J. Biomech. Eng. 1988; 120: 227–37.

    Article  Google Scholar 

  64. Hsieh HJ, Li NQ, Frangos JA (1992) Shear-induced Platelet-derived Growth Factor Gene Expression in Human Endothelial Cells is Mediated by Protein Kinase-C. J. Cellular Physiology. 150: 552–8.

    Article  CAS  Google Scholar 

  65. Hsieh TC, Juan G, Darzynkiewicz Z, Wu JM (1999) Resveratrol Increases Nitric Oxide Synthase, Induces Accumulation of p53 and p21(WAF1/CIP1), and Suppresses Cultured Bovine Pulmonary Artery Endothelial Cell Proliferation by Perturbing Progression Through S and G2. Cancer Res. 59: 2596–601.

    PubMed  CAS  Google Scholar 

  66. Hunt SC, Hopkins PN, Williams RR (1996) Genetics and Mechanisms. In: Atherosclerosis and Coronary Artery Disease. Fuster V, Ross R, Topol EJ. eds. Philadelphia: Lippincott-Raven. 209–35.

    Google Scholar 

  67. Ishida A, Sasaguri T, Kosaka C, Nojima H, Ogata J (1997) Induction of the Cyclin-dependent kinase Inhibitor p21(Sdil/Cipl/Wafl) by Nitric Oxide-generating Vasodilator in Vascular Smooth Muscle Cells. J. Biol. Chem. 272: 10050–7.

    Google Scholar 

  68. Ju H, Zou R, Venema VJ, Venema RC (1997) Direct Interaction of Endothelial Nitric Oxide Synthase and Caveolin-1 Inhibits Synthase Activity. J. Biol. Chem. 272: 18522–5.

    Google Scholar 

  69. Khalifa AM, Giddens DP (1981) Characterization and Evolution Poststenotic Flow Disturbances. J. Biomech. 14: 279–96.

    Article  PubMed  CAS  Google Scholar 

  70. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM (1996) Nitric Oxide Regulates Vascular Cell Adhesion Molecule 1 Gene Expression and Redox-sensitive Transcriptional Events in Human Vascular Endothelial Cells. Proc. Natl. Acad. Sci. U.S.A. 93: 9114–9.

    Google Scholar 

  71. Kleinstreuer C, Lei M, Archie JP (1996) Flow Input Waveform Effects on the Temporal and Spatial Wall Shear Stress Gradients in a Femoral Graft-artery Connector. J. Biomech. Eng. 118: 506–10.

    Google Scholar 

  72. Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillation Shear Stress. Arteriosclerosis. 5: 293–302.

    Google Scholar 

  73. Kuchan MJ, Frangos JA (1993) Shear Stress Regulates Endothelin-1 Release via Protein Kinase C and cGMP in Cultured Endothelial Cells. Am. J. Physiol. 264: H150–6.

    PubMed  CAS  Google Scholar 

  74. Kuchan MJ, Jo H, Frangos JA (1994) Role of G Proteins in Shear Stress-Mediated Nitric Oxide Production by Endothelial Cells. American Journal of Physiology, 267: C753–8.

    PubMed  CAS  Google Scholar 

  75. Kuchan MJ, Frangos JA (1994) Role of Calcium and Calmodulin in Flow-induced Nitric Oxide Production in Endothelial Cells. Am. J. Physiol. 266: C628–36.

    PubMed  CAS  Google Scholar 

  76. Lang D, Mosfer SI, Shakesby A, Donaldson F, Lewis MJ (2000) Coronary Microvascular Endothelial Cell Redox State in Left Ventricular Hypertrophy: The Role of Angiotensin II. Circ. Res. 86: 463–9.

    Google Scholar 

  77. Langille BL, Adamson SL (1981) Relationship Between Blood Flow Direction and Endothelial Cell Orientation at Arterial Branch Sites in Rabbits and Mice. Circ. Res. 48: 481–8.

    Google Scholar 

  78. Langille LB (1984) Integrity of Arterial Endothelium Following Acute Exposure to High Shear Stress. Biorheology. 21: 333–46.

    PubMed  CAS  Google Scholar 

  79. Levesque MJ, Liepsch D, Moravec S, Nerem RM (1986) Correlation of Endothelial Cell Shape and Wall Shear Stress in a Stenosed Dog Aorta. Arteriosclerosis. 6: 220–9.

    Article  PubMed  CAS  Google Scholar 

  80. Levesque MJ, Nerem RM, Sprague EA (1990) Vascular Endothelial Cell Proliferation in Culture and the Influence of Flow. Biomaterials. 11: 702–7.

    Article  PubMed  CAS  Google Scholar 

  81. Li S, Couet J, Lisanti MP (1996) Src Tyrosine Kinases, Galpha Subunits, and H-Ras Share a Common Membrane-anchored Scaffolding Protein, Caveolin. Caveolin Binding Negatively Regulates the Auto-activation of Src Tyrosine Kinases. J. Biol. Chem. 271: 29182–90.

    Google Scholar 

  82. Lin SJ, Jan KM, Schuessler G, Weinbaum S, Chien S (1988) Enhanced Macromolecular Permeability of Aortic Endothelial Cells in Association with Mitosis. Arteriosclerosis. 73: 223–32.

    Article  CAS  Google Scholar 

  83. Liu, J,Garcia-Cardena G, Sessa WC (1996) Palmitoylation of Endothelial Nitric Oxide Synthase is Necessary for Optimal Stimulated Release of Nitric Oxide: Implications for Caveolae Localization. Biochemistry. 35: 13277–81.

    Google Scholar 

  84. Luvara G, Pueyo ME, Philippe M, Mandet C, Savoie F, Henrion D, Michel JB (1998) Chronic Blockade of NO Synthase Activity Induces a Proinflammatory Phenotype in the Arterial Wall: Prevention by Angiotensin II Antagonism. Arterioscler. Thromb. Vasc. Biol. 1998 18: 1408–16.

    Article  Google Scholar 

  85. Malek A, Izumo S (1992) Physiological Fluid Shear Stress Causes Downregulation of Endothelin1 mRNA in Bovine Aortic Endothelium. Am. J. Physiol. 263: C389–96.

    PubMed  CAS  Google Scholar 

  86. Malek AM, Izumo S (1994) Molecular Aspects of Signal Transduction of Shear Stress in the Endothelial Cell. J. Hypertens. 12: 989–99.

    Article  PubMed  CAS  Google Scholar 

  87. Mancini GB, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B (1996) Angiotensin-converting Enzyme Inhibition with Quinapril Improves Endothelial Vasomotor Dysfunction in Patients with Coronary Artery Disease. The TREND ( Trial on Reversing ENdothelial Dysfunction) Study. Circulation. 94: 258–65.

    Google Scholar 

  88. McDonald KK, Zharikov S, Block ER, Kilberg MS (1997) A Caveolar Complex Between the Cationic Amino Acid Transporter 1 and Endothelial Nitric-oxide Synthase May Explain the “Arginine Paradox”. J. Biol. Chem. 272: 31213–6.

    Google Scholar 

  89. Michel JB, Feron O, Sase K, Prabhakar P, Michel T (1997a) Caveolin Versus Calmodulin. Counterbalancing Allosteric Modulators of Endothelial Nitric Oxide Synthase. J. Biol. Chem. 272: 25907–12.

    Google Scholar 

  90. Michel JB., Feron O, Sacks D, Michel T (1997b) Reciprocal Regulation of Endothelial Nitric Oxide Synthase by Ca2+- Calmodulin and Caveolin. J. Biol. Chem. 272: 15583–6.

    Google Scholar 

  91. Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez-Crespo I, Tiganis T, Bozinovski S, de Montellano PR, Kemp BE, Pearson RB (1999) The Akt Kinase Signals Directly to Endothelial Nitric Oxide Synthase. Curr. Biol. 9: 845–8.

    Google Scholar 

  92. Miller FJ Jr, Gutterman DD, Rios CD, Heistad DD, Davidson BL (1998) Superoxide Production in Vascular Smooth Muscle Contributes to Oxidative Stress and Impaired Relaxation in Atherosclerosis. Circ. Res. 82: 1298–305.

    Google Scholar 

  93. Mohazzab KM, Kaminski PM, Wolin MS (1994) NADH Oxidoreductase is a Major Source of Superoxide Anion in Bovine Coronary Artery Endothelium. Am. J. Physiol. 266: H2568–72.

    PubMed  CAS  Google Scholar 

  94. Moore JE, Xu C, Glagov S, Zarins CK, Ku DN (1994) Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis. Atherosclerosis. 110: 225–40.

    Google Scholar 

  95. Moroi M, Zhang L, Yasuda T, Virmani R, Gold HK, Fishman MC, Huang PL (1998) Interaction of Genetic Deficiency of Endothelial Nitric Oxide, Gender, and Pregnancy in Vascular Response to Injury in Mice..J Clin. Invest. 101: 1225–32.

    Google Scholar 

  96. Newman PJ (1999) Switched at Birth: a New Family for PECAM-1. J. Clin. Invest. 103: 5–9.

    Article  PubMed  CAS  Google Scholar 

  97. Nishida K, Harrison DG, Navas JP, Fisher AA, Dockery SP, Uematsu M, Nerem RM, Alexander RW, Murphy IT (1992) Molecular Cloning and Characterization of the Constitutive Bovine Aortic Endothelial Cell Nitric Oxide Synthase. J. Clin. Invest. 90: 2092–6.

    Google Scholar 

  98. Noris M, Morigi M, Donadelli R, Aiello S, Foppolo M, Todeschini M, Orisio S, Remuzzi G, Remuzzi A (1995) Nitric Oxide Synthesis by Cultured Endothelial Cells Is Modulated by Flow Conditions. Circ. Res. 76: 536–43.

    Google Scholar 

  99. Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia Increases Endothelial Superoxide Anion Production. J. Clin. Invest. 91: 2546–51.

    Google Scholar 

  100. Ojha M. (1994) Wall Shear Stress Temporal Gradient and Anastomotic Intimal Hyperplasia. Cir. Res. 74: 1227–31.

    Article  CAS  Google Scholar 

  101. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a Family of Scaffolding Proteins for Organizing “Preassembled Signalling Complexes” at the Plasma Membrane. J. Biol. Chem. 273: 5419–22.

    Google Scholar 

  102. Okano M, Yoshida Y (1992) Endothelial Cell Morphometry of Atherosclerotic Lesions and Flow Profiles at Aortic Bifurcations in Cholesterol Fed Rabbits. J. Biomech. Eng. 114: 301–8.

    Google Scholar 

  103. Okano M, Yoshida Y (1993) Influence of Shear Stress on Endothelial Cell Shapes and Junction Complexes at Flow Dividers of Aortic Bifurcations in Cholesterol-fed Rabbits. Front. Med. Biol. Eng. 5: 95–120.

    Google Scholar 

  104. Pagano PJ, Chanock SJ, Siwik DA, Colucci WS, Clark JK(1998) Angiotensin II Induces p67phox mRNA Expression and NADPH Oxidase Superoxide Generation in Rabbit Aortic Adventitial Fibroblasts. Hypertension. 32: 331–7.

    Google Scholar 

  105. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM (1992) Generation of Superoxide by Purified Brain Nitric Oxide Synthase. J. Biol. Chem. 267: 24173–6.

    Google Scholar 

  106. Rajotte D, Arap W, Hagedorn M, Koivunen E, Pasqualini R, Ruoslahti E (1998) Molecular Heterogeneity of the Vascular Endothelium Revealed by in vivo Phage Display. J. Clin. Invest. 102: 430–7.

    Google Scholar 

  107. Rieder MJ, Carmona R, Krieger JE, Pritchard KA Jr, Greene AS (1997) Suppression of Angiotensinconverting Enzyme Expression and Activity by Shear Stress. Circ. Res. 80: 312–9.

    Google Scholar 

  108. Rosen GM, Freeman BA. Detection of Superoxide Generated by Endothelial Cells. (1984) Proch. Natl. Acad. Sci. U.S.A. 81: 7269–73.

    Google Scholar 

  109. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced Release of Endothelium-derived Relaxing Factor. (1986) Am. J. Physiol. 250: H1145–9.

    PubMed  CAS  Google Scholar 

  110. Rubanyi GM. The Role of Endothelium in Cardiovascular Homeostasis and Diseases (1993) J. Cardiovasc. Pharmacol. 4: 51–514.

    Google Scholar 

  111. Schwarz G, Callewaert G, Droogmans G, Nilius B (1992) Shear Stress-induced Calcium Transients in Endothelial Cells from Human Umbilical Cord Veins. J. Physiol. 458: 527–38.

    PubMed  CAS  Google Scholar 

  112. Sessa WC., Garcia-Cardena G, Liu J, Keh A, Pollock JS, Bradley J, Thiru S, Braverman IM, Desai KM (1995) The Golgi Association of Endothelial Nitric Oxide Synthase Is Necessary for the Efficient Synthesis of Nitric Oxide. J. Biol. Chem. 270: 17641–4.

    Google Scholar 

  113. Shaaban AM, Duerinckx AJ (2000) Wall Shear Stress and Early Atherosclerosis: a Review. A.J.R. Am. J. Roentgenol. 174: 1657–65.

    Google Scholar 

  114. Shaul R. Smart WEJ, Robinson LJ, German Z, Yuhanna IS, YingY, Anderson RG, Michel T (1996) Acylation Targets Emdothelial Nitric-oxide Synthase to Plasmalemmal Caveolae. J. Biol. Chem. 271: 6518–22.

    Google Scholar 

  115. Singh GK, Mathews TJ, Clarke SC, Yannicos T, Smith BL (1995) Annual Summary of Births, Marriages, Divorces, and Deaths: United States, 1994. Mon. Vital. Stat. Rep. 43: 1–37.

    Google Scholar 

  116. Svindland A. (1983) The Localization of Sudanophilic and Fibrous Plaques in the Main Left Coronary Bifurcation. Atherosclerosis. 48: 139–45.

    Article  PubMed  CAS  Google Scholar 

  117. Tardy Y, Resnick N, Nagel T, Gimbrone MA, Dewey CF (1997) Shear Stress Gradients Remodel Endothelial Monolayers in vitro via a Cell Proliferation-migration-loss Cycle. Arterioscler. Thromb. Vasc. Biol. 17: 3102–6.

    Google Scholar 

  118. Traub O, Berk BC (1998) Laminar Shear Stress: Mechanisms by which Endothelial Cells Transduce an Atheroprotective Force. Arterioscler. Thromb. Vasc Biol. 18: 677–85.

    Google Scholar 

  119. Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP (1995) Characterization of a Sudden Expansion Flow Chamber to Study the Response of Endothelium to Flow Recirculation. J. Biomech. Eng. 117: 203–10.

    Google Scholar 

  120. Tsao PS, Buitrago R, Chan JR, Cooke JP (1996) Fluid Flow Inhibits Endothelial Adhesiveness. Nitric Oxide and Transcriptional Regulation of VCAM-1. Circulation. 94: 1682–9.

    Article  PubMed  CAS  Google Scholar 

  121. Tsao PS, Wang B, Buitrago R, Shyy JY, Cooke JP (1997) Nitric Oxide Regulates Monocyte Chemotactic Protein-1. Circulation. 96: 934–40.

    Article  PubMed  CAS  Google Scholar 

  122. Vyalov S, Langille BL, Gotlieb AI (1996) Decreased Blood Flow Rate Disrupts Endothelial Repair in vivo. Am. J. Pathol. 149: 2107–18.

    Google Scholar 

  123. Wang DM, Tarbell JM (1995) Modeling Interstitial Flow in an Artery Wall Allows Estimation of Wall Shear Stress on Smooth Muscle Cells. J. Biomech. Eng. 117: 358–63.

    Google Scholar 

  124. Wang W, Diamond SL (1997) Does Elevated Nitric Oxide Production Enhance the Release of Prostacyclin from Shear Stressed Aortic Endothelial Cells? Biochem. Biophys. Res. Commun. 233: 748–51.

    Google Scholar 

  125. White CR, Haidekker M, Bao X, Frangos JA (2001) Temporal Gradients in Shear Stress, but not Spatial Gradients or Steady Shear, Induce Endothelial Cell Proliferation. Circulation 103: 2508–13.

    Google Scholar 

  126. Wissler RW (1994) New Insights into the Pathogenesis of Atherosclerosis as Revealed by PDAY. Pathobiological Determinants of Atherosclerosis in Youth. Atherosclerosis. 108 Suppl: S3–20.

    Google Scholar 

  127. Wright HP (1972) Mitosis Patterns in Aortic Endothelium. Atherosclerosis. 15: 93–100.

    Article  PubMed  CAS  Google Scholar 

  128. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells. Nature. 332: 411–5.

    Article  PubMed  CAS  Google Scholar 

  129. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid Bifurcation Atherosclerosis. Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress. Circ. Res. 53: 502–14.

    Google Scholar 

  130. Zhang H, Schmeisser A, Garlichs CD, Plotze K, Damme U, Mugge A, Daniel WG (1999) Angiotensin II-induced Superoxide Anion Generation in Human Vascular Endothelial Cells: Role of Membrane-bound NADH -/ NADPH-oxidases. Cardiovasc. Res. 44: 215–22.

    Google Scholar 

  131. Ziegler T, Bouzourene K, Harrison VJ, Brunner HR, Hayoz D (1998) Influence of oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 18: 686–92.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag France

About this chapter

Cite this chapter

Frangos, J., White, C.R., Dusserre, N. (2003). Steady and Unsteady Fluid Shear Control of Atherosclerosis. In: Molecular Basis for Microcirculatory Disorders. Springer, Paris. https://doi.org/10.1007/978-2-8178-0761-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0761-4_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0763-8

  • Online ISBN: 978-2-8178-0761-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics