Skip to main content

Microvascular Effects of the Heme Oxygenase-CO System

  • Chapter
Molecular Basis for Microcirculatory Disorders

Abstract

Heme oxygenase (HO) degrades protoheme IX into carbon monoxide (CO), ferrous iron, and biliverdin-IXα. The bile pigment is rapidly reduced to bilirubin through the action of biliverdin reductase (1–3). HO-1, the first form of the enzyme discovered, is an inducible protein, concentrated in macrophages in the reticuloendothelial system that are exposed to degrading red blood cells and stimulated by hemolysis and numerous other toxic perturbations to eliminate potentially toxic heme. This isoform is thus present in spleen, a major organ for destruction of aged red blood cells and in Kupffer cells (4, 5). By contrast, HO-2 is constitutive and known to be highly concentrated in neural tissues (6), testis (7), and hepatocytes of rodents (5) and humans (8). In addition, a third isozyme, HO-3, whose catalytic activity is relatively low, has been described recently (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Maines MD, Kappas A (1974) Cobalt Induction of Hepatic Herne Oxygenase; with Evidence that Cytochrome P-450 is not Essential for this Enzyme Activity. Proc. Natl. Acad. Sci. USA. 71 (11): 42937.

    Article  Google Scholar 

  2. Tenhunen R, Marver HS, Schmid R (1968) The Enzymatic Conversion of Herne to Bilirubin by Microsomal Herne Oxygenase. Proc. Natl. Acad. Sci. USA 61 (2): 748–55.

    Article  PubMed  CAS  Google Scholar 

  3. Yoshida T, Takahashi S, Kikuchi G (1974) Partial Purification and Reconstitution of the Herne Oxygenase System from Pig Spleen Microsomes. J. Biochem. (Tokyo) 75 (5): 1187–91.

    CAS  Google Scholar 

  4. Bauer I, Wanner GA, Rensing H, Alte C, Miescher EA, Wolf B, Pannen BH, Clemens MG, Bauer M (1998) Expression Pattern of Herne Oxygenase Isoenzymes 1 and 2 in Normal and Stress-Exposed Rat Liver. Hepatology. 27 (3): 829–38.

    Article  PubMed  CAS  Google Scholar 

  5. Goda N, Suzuki K, Naito M, Takeoka S, Tsuchida E, Ishimura Y, Tamatani T, Suematsu M (1998) Distribution of heure oxygenase isoforms in rat liver. Topographic basis for carbon monoxide-mediated microvascular relaxation. J. Clin. Invest. 101 (3): 604–12.

    Article  PubMed  CAS  Google Scholar 

  6. Snyder SH, Jaffrey SR, Zakhary R (1998) Nitric Oxide and Carbon Monoxide: Parallel Roles as Neural Messengers. Brain Res. Brain Res. Rev. 26 (2–3): 167–75.

    Article  CAS  Google Scholar 

  7. Trakshel GM, Maines MD (1988) Detection of Two Herne Oxygenase Isoforms in the Human Testis. Biochem. Biophys. Res. Commun. 154 (1): 285–91.

    Article  PubMed  CAS  Google Scholar 

  8. Makino N, Suematsu M, Sugiura Y, Morikawa H, Shiomi S, Goda N, Sano T, Nimura Y, Sugimachi K, Ishimura Y (2001) Altered Expression of Herne Oxygenase-1 in the Livers of Patients with Portal Hypertensive Diseases. Hepatology. 33 (1): 32–42.

    Article  PubMed  CAS  Google Scholar 

  9. McCoubrey WK, Huang TJ, Maines MD (1997) Isolation and Characterization of a cDNA from the Rat Brain that Encodes Hemoprotein Herne Oxygenase-3. Eur. J. Biochem. 247 (2): 725–32.

    Article  PubMed  CAS  Google Scholar 

  10. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH (1993) Carbon Monoxide: a Putative Neural Messenger. Science. 259 (5093): 381–4.

    Article  PubMed  CAS  Google Scholar 

  11. Suematsu M, Kashiwagi S, Sano T, Goda N, Shinoda Y, Ishimura Y (1994) Carbon Monoxide as an Endogenous Modulator of Hepatic Vascular Perfusion. Biochem. Biophys. Res. Commun. 205 (2): 1333–7.

    Article  PubMed  CAS  Google Scholar 

  12. Suematsu M, Wakabayashi Y, Ishimura Y (1996) Gaseous Monoxides: a New Class of Microvascular Regulator in the Liver. Cardiovasc. Res. 32 (4): 679–86.

    PubMed  CAS  Google Scholar 

  13. Suematsu M, Goda N, Sano T, Kashiwagi S, Egawa T, Shinoda Y, Ishimura Y (1995) Carbon Monoxide: an Endogenous Modulator of Sinusoidal Tone in the Perfused Rat Liver. J. Clin. Invest. 96 (5): 2431–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kyokane T, Norimizu S, Taniai H, Yamaguchi T, Takeoka S, Tsuchida E, Naito M, Nimura Y, Ishimura Y, Suematsu M (2001) Carbon Monoxide from Heme Catabolism Protects against Hepatobiliary Dysfunction in Endotoxin-treated Rat Liver. Gastroenterology. 120 (5): 1227–40.

    Article  PubMed  CAS  Google Scholar 

  15. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon Monoxide has Anti-inflammatory Effects Involving the Mitogen-activated Protein Kinase Pathway. Nat. Med. 6 (4): 422–8.

    Article  PubMed  CAS  Google Scholar 

  16. Morisaki H, Katayama T, Kotake Y, Ito M, Tamatani T, Sakamoto S, Ishimura Y, Takeda J, Suematsu M (2001) Roles of Carbon Monoxide in Leukocyte and Platelet Dynamics in Rat Mesenteric during Sevoflurane Anesthesia. Anesthesiology. 95 (1): 192–9.

    Article  PubMed  CAS  Google Scholar 

  17. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an Antioxidant of Possible Physiological Importance. Science. 235 (4792): 1043–6.

    Article  PubMed  CAS  Google Scholar 

  18. Ignarro LJ, Ballot B, Wood KS (1984) Regulation of Soluble Guanylate Cyclase Activity by Porphyrins and Metalloporphyrins. Biol. Chem. 259: 6201–7.

    Google Scholar 

  19. Ignarro LJ (1994) Regulation of Cytosolic Guanylyl Cyclase by Porphyrins and Metalloporphyrins. Adv. Pharmacol. 26: 35–65.

    Article  PubMed  CAS  Google Scholar 

  20. Koesling D, Friebe A (1999) Soluble Guanylyl Cyclase: Structure and Regulation. Rev. Physiol. Biochem. Pharmacol. 135: 41–65.

    Google Scholar 

  21. Sano T, Shiomi M, Wakabayashi Y, Shinoda Y, Goda N, Yamaguchi T, Nimura Y, Ishimura Y, Suematsu M (1997) Endogenous Carbon Monoxide Suppression Stimulates Bile Acid-dependent Biliary Transport in Perfused Rat Liver. Am. J. Physiol. 272 (5 Pt 1): G1268 - G75.

    PubMed  CAS  Google Scholar 

  22. Shinoda Y, Suematsu M, Wakabayashi Y, Suzuki T, Goda N, Saito S, Yamaguchi T, Ishimura Y (1998) Carbon Monoxide as a Regulator of Bile Canalicular Contractility in Cultured Rat Hepatocytes. Hepatology. 28 (2): 286–95.

    Article  PubMed  CAS  Google Scholar 

  23. Imai T, Morita T, Shindo T, Nagai R, Yazaki Y, Kurihara H, Suematsu M, Katayama S (2001) Vascular Smooth Muscle Cell-directed Overexpression of Heme Oxygenase-1 Elevates Blood Pressure through Attenuation of Nitric Oxide-induced Vasodilation in Mice. Circ. Res. 89: 55–62.

    Google Scholar 

  24. Pinzani M, Gentilini P (1999) Biology of Hepatic Stellate Cells and their Possible Relevance in the Pathogenesis of Portal Hypertension in Cirrhosis. Semin. Liver. Dis., 19 (4): 397–410.

    Article  PubMed  CAS  Google Scholar 

  25. Suematsu M, Ishimura Y (2000) The Heme Oxygenase-CO System as a Regulator of Hepatobiliary Function. Hepatology. 31: 3–6.

    Article  PubMed  CAS  Google Scholar 

  26. Rockey D (1997) The Cellular Pathogenesis of Portal Hypertension: Stellate Cell Contractility, Endothelin, and Nitric Oxide. Hepatology. 25 (1): 2–5.

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi S, Takamiya R, Yamaguchi T, Matsumoto K, Tojo SJ, Tamatani T, Kitajima M, Makino N, Ishimura Y, Suematsu M (1999) Induction of Herne Oxygenase-1 Suppresses Venular Leukocyte Adhesion Elicited by Oxidative Stress: Role of Bilirubin Generated by the Enzyme. Circ. Res. 85 (8): 663–71.

    Article  PubMed  CAS  Google Scholar 

  28. Takamiya R, Murakami M, Kajimura M, Goda N, Makiro N, Takamiya Y, Yamaguchi T, Ishimura Y, Hozumi N, Suematsu M (2002) Stabilization of Most Cells by Herne Oxygenase-1: An Anti-Inflammatory Role. Am. J. Physiol. Heart Circ. Physiol. 283: 861–70.

    Google Scholar 

  29. Nowell SA, Leakey JE, Warren JF, Lang NP, Frame LT (1998) Identification of Enzymes Responsible for the Metabolism of Heme in Human Platelets. J. Biol. Chem. 273 (50): 33342–6.

    Article  PubMed  CAS  Google Scholar 

  30. Morisaki H, Katayama T, Kotake Y, Handa M, Ikeda Y, Takeda J, Ito M, Suematsu M, Carbon monoxide modulates endotoxin-induced microvascular leukocyte adhesion through platelet-dependent mechanisms (Anesthesiology in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag France

About this chapter

Cite this chapter

Suematsu, M., Goda, N., Kajimura, M. (2003). Microvascular Effects of the Heme Oxygenase-CO System. In: Molecular Basis for Microcirculatory Disorders. Springer, Paris. https://doi.org/10.1007/978-2-8178-0761-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0761-4_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0763-8

  • Online ISBN: 978-2-8178-0761-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics