Advertisement

Neuroendocrine Control of Puberty

  • Carine Villanueva
  • Nicolas de RouxEmail author

Abstract

Puberty results from the complete maturation of the GnRH neuronal network. It marks the reactivation of this network after a long period of quiescence during childhood. This reactivation causes an increase of sexual hormones leading to the appearance of secondary sexual characteristic. Several neuropeptides have now been described. The age at puberty is a sensitive indicator of evolution.

Keywords

Median Eminence Arcuate Nucleus GnRH Neuron Hypogonadotropic Hypogonadism Central Precocious Puberty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    de Roux N, Genin E, Carel JC et al (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100:10972–10976PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Seminara SB, Messager S, Chatzidaki EE et al (2003) The GPR54 gene as a regulator of puberty. N Engl J Med 349:1614–1627CrossRefPubMedGoogle Scholar
  3. 3.
    Topaloglu AK, Reimann F, Guclu M et al (2009) TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet 41:354–358PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Topaloglu AK, Tello JA, Kotan LD et al (2012) Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N Engl J Med 366:629–635CrossRefPubMedGoogle Scholar
  5. 5.
    Pinilla L, Aguilar E, Dieguez C et al (2012) Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 92:1235–1316CrossRefPubMedGoogle Scholar
  6. 6.
    Goodman RL, Lehman MN (2012) Kisspeptin neurons from mice to men: similarities and differences. Endocrinology 153:5105–5118PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Ducret E, Anderson GM, Herbison AE (2009) RFamide-related peptide-3, a mammalian gonadotropin-inhibitory hormone ortholog, regulates gonadotropin-releasing hormone neuron firing in the mouse. Endocrinology 150:2799–2804CrossRefPubMedGoogle Scholar
  8. 8.
    Ojeda SR, Urbanski H (2007) Puberty in the rat. In: Neill D, Knobil E (eds) The physiology of reproduction. Place Raven Press, New York, pp 363–410Google Scholar
  9. 9.
    Ojeda SR, Lomniczi A, Mastronardi C et al (2006) Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology 147:1166–1174CrossRefPubMedGoogle Scholar
  10. 10.
    Sharif A, Baroncini M, Prevot V (2013) Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 98:1–15CrossRefPubMedGoogle Scholar
  11. 11.
    Prevot V (2002) Glial-neuronal-endothelial interactions are involved in the control of GnRH secretion. J Neuroendocrinol 14:247–255CrossRefPubMedGoogle Scholar
  12. 12.
    Bellefontaine N, Hanchate NK, Parkash J et al (2011) Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93:74–89CrossRefPubMedGoogle Scholar
  13. 13.
    Guimiot F, Chevrier L, Dreux S et al (2012) Negative fetal FSH/LH regulation in late pregnancy is associated with declined kisspeptin/KISS1R expression in the tuberal hypothalamus. J Clin Endocrinol Metab 97:E2221–E2229CrossRefPubMedGoogle Scholar
  14. 14.
    Wu FC, Borrow SM, Nicol K et al (1989) Ontogeny of pulsatile gonadotrophin secretion and pituitary responsiveness in male puberty in man: a mixed longitudinal and cross-sectional study. J Endocrinol 123:347–359CrossRefPubMedGoogle Scholar
  15. 15.
    Abreu AP, Dauber A, Macedo DB et al (2013) Central precocious puberty caused by mutations in the imprinted gene MKRN3. N Engl J Med 368:2467–2475CrossRefPubMedGoogle Scholar
  16. 16.
    Elias CF (2012) Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 23:9–15PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Strobel A, Issad T, Camoin L et al (1998) A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18:213–215CrossRefPubMedGoogle Scholar
  18. 18.
    Zeinoaldini S, Swarts JJ, Van de Heijning BJ (2006) Chronic leptin infusion advances, and immunoneutralization of leptin postpones puberty onset in normally fed and feed restricted female rats. Peptides 27:1652–1658CrossRefPubMedGoogle Scholar
  19. 19.
    Louis GW, Greenwald-Yarnell M, Phillips R et al (2011) Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 152:2302–2310PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Sisk CL, Foster DL (2004) The neural basis of puberty and adolescence. Nat Neurosci 7:1040–1047CrossRefPubMedGoogle Scholar
  21. 21.
    Gottsch ML, Navarro VM, Zhao Z et al (2009) Regulation of Kiss1 and dynorphin gene expression in the murine brain by classical and nonclassical estrogen receptor pathways. J Neurosci 29:9390–9395PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Clarkson J, Boon WC, Simpson ER et al (2009) Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 150:3214–3220PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Sulem P, Gudbjartsson DF, Rafnar T et al (2009) Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat Genet 41:734–738CrossRefPubMedGoogle Scholar
  24. 24.
    Ong KK, Elks CE, Li S et al (2009) Genetic variation in LIN28B is associated with the timing of puberty. Nat Genet 41:729–733PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    He C, Kraft P, Chen C et al (2009) Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet 41:724–728PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Perry JR, Stolk L, Franceschini N et al (2009) Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat Genet 41:648–650PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Zhu H, Shah S, Shyh-Chang N et al (2010) Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nat Genet 42:626–630PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Lehrbach NJ, Armisen J, Lightfoot HL et al (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16:1016–1020PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Peng S, Chen LL, Lei XX et al (2011) Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells 29:496–504CrossRefPubMedGoogle Scholar
  30. 30.
    Hoffmann K, Heller R (2011) Uniparental disomies 7 and 14. Best Pract Res Clin Endocrinol Metab 25:77–100CrossRefPubMedGoogle Scholar
  31. 31.
    Lomniczi A, Loche A, Castellano JM et al (2013) Epigenetic control of female puberty. Nat Neurosci 16:281–289PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Hochberg Z, Belsky J (2013) Evo-devo of human adolescence: beyond disease models of early puberty. BMC Med 11:113PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Mouritsen A, Frederiksen H, Sorensen K et al (2013) Urinary phthalates from 168 girls and boys measured twice a year during a 5 year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab 98(9):3755–3764CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.INSERM U1141, Université Paris DiderotParisFrance
  2. 2.Laboratoire de Biochimie-HormonologieHôpital Robert DebréParisFrance

Personalised recommendations