Skip to main content

The Role of PI3K/AKT/mTOR Inhibitors in the Treatment of Hematological Malignancies

  • Chapter
mTOR Inhibition for Cancer Therapy: Past, Present and Future
  • 812 Accesses

Abstract

The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway plays a major role in cancer proliferation and resistance to chemotherapy. In particular, our understanding of the role of PI3K/AKT/mTOR pathway in the pathogenesis of leukemia and lymphoma has led to the development and approval of several targeted agents. This chapter summarizes the role that this pathway plays in each of the hematological malignancies and the agents that are both approved and in development and that target it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  CAS  PubMed  Google Scholar 

  2. Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet. 2008;9(2):115–28.

    Article  CAS  PubMed  Google Scholar 

  3. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 2006;25(15):3515–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature. 2006;441(7092):518–22.

    Article  CAS  PubMed  Google Scholar 

  6. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature. 2006;441(7092):475–82.

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009;2(98):ra75.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, et al. PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature. 2006;442(7104):779–85.

    Article  CAS  PubMed  Google Scholar 

  9. Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L, et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci U S A. 2008;105(49):19384–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Buitenhuis M, Baltus B, Lammers JW, Coffer PJ, Koenderman L. Signal transducer and activator of transcription 5a (STAT5a) is required for eosinophil differentiation of human cord blood-derived CD34+ cells. Blood. 2003;101(1):134–42.

    Article  CAS  PubMed  Google Scholar 

  11. Nteliopoulos G, Marley SB, Gordon MY. Influence of PI-3K/Akt pathway on Wnt signalling in regulating myeloid progenitor cell proliferation. Evidence for a role of autocrine/paracrine Wnt regulation. Br J Haematol. 2009;146(6):637–51.

    Article  CAS  PubMed  Google Scholar 

  12. von Lindern M, Deiner EM, Dolznig H, Parren-Van Amelsvoort M, Hayman MJ, Mullner EW, et al. Leukemic transformation of normal murine erythroid progenitors: v- and c-ErbB act through signaling pathways activated by the EpoR and c-Kit in stress erythropoiesis. Oncogene. 2001;20(28):3651–64.

    Article  CAS  Google Scholar 

  13. Knight ZA, Schmidt SF, Birsoy K, Tan K, Friedman JM. A critical role for mTORC1 in erythropoiesis and anemia. eLife. 2014;3:e01913.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood. 2006;107(3):907–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sivertsen EA, Hystad ME, Gutzkow KB, Dosen G, Smeland EB, Blomhoff HK, et al. PI3K/Akt-dependent Epo-induced signalling and target genes in human early erythroid progenitor cells. Br J Haematol. 2006;135(1):117–28.

    Article  CAS  PubMed  Google Scholar 

  16. Bouscary D, Pene F, Claessens YE, Muller O, Chretien S, Fontenay-Roupie M, et al. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood. 2003;101(9):3436–43.

    Article  CAS  PubMed  Google Scholar 

  17. Kozuma Y, Kojima H, Yuki S, Suzuki H, Nagasawa T. Continuous expression of Bcl-xL protein during megakaryopoiesis is post-translationally regulated by thrombopoietin-mediated Akt activation, which prevents the cleavage of Bcl-xL. J Thromb Haemost: JTH. 2007;5(6):1274–82.

    Article  CAS  PubMed  Google Scholar 

  18. Majka M, Janowska-Wieczorek A, Ratajczak J, Kowalska MA, Vilaire G, Pan ZK, et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood. 2000;96(13):4142–51.

    CAS  PubMed  Google Scholar 

  19. Geddis AE, Fox NE, Kaushansky K. Phosphatidylinositol 3-kinase is necessary but not sufficient for thrombopoietin-induced proliferation in engineered Mpl-bearing cell lines as well as in primary megakaryocytic progenitors. J Biol Chem. 2001;276(37):34473–9.

    Article  CAS  PubMed  Google Scholar 

  20. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A, et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim Biophys Acta. 2010;1803(9):991–1002.

    Article  CAS  PubMed  Google Scholar 

  21. Horn S, Bergholz U, Jucker M, McCubrey JA, Trumper L, Stocking C, et al. Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells. Oncogene. 2008;27(29):4096–106.

    Article  CAS  PubMed  Google Scholar 

  22. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M, et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood. 2010;115(7):1406–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell. 2009;5(3):279–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Jacob B, Osato M, Yamashita N, Wang CQ, Taniuchi I, Littman DR, et al. Stem cell exhaustion due to Runx1 deficiency is prevented by Evi5 activation in leukemogenesis. Blood. 2010;115(8):1610–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Guo W, Lasky JL, Chang CJ, Mosessian S, Lewis X, Xiao Y, et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature. 2008;453(7194):529–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK, et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia. 2003;17(5):995–7.

    Article  CAS  PubMed  Google Scholar 

  27. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget. 2010;1(2):89–103.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Care RS, Valk PJ, Goodeve AC, Abu-Duhier FM, Geertsma-Kleinekoort WM, Wilson GA, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121(5):775–7.

    Article  CAS  PubMed  Google Scholar 

  29. Doepfner KT, Spertini O, Arcaro A. Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia. 2007;21(9):1921–30.

    Article  CAS  PubMed  Google Scholar 

  30. Bohm A, Aichberger KJ, Mayerhofer M, Herrmann H, Florian S, Krauth MT, et al. Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells. Eur J Clin Invest. 2009;39(5):395–405.

    Article  CAS  PubMed  Google Scholar 

  31. Xu Q, Thompson JE, Carroll M. mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood. 2005;106(13):4261–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zeng Z, dos Sarbassov D, Samudio IJ, Yee KW, Munsell MF, Ellen Jackson C, et al. Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. Blood. 2007;109(8):3509–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yee KW, Zeng Z, Konopleva M, Verstovsek S, Ravandi F, Ferrajoli A, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12(17):5165–73.

    Article  CAS  Google Scholar 

  34. Rizzieri DA, Feldman E, Dipersio JF, Gabrail N, Stock W, Strair R, et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14(9):2756–62.

    Article  CAS  Google Scholar 

  35. Perl AE, Kasner MT, Tsai DE, Vogl DT, Loren AW, Schuster SJ, et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15(21):6732–9.

    Article  CAS  Google Scholar 

  36. Wei AH, Sadawarte S, Catalano J, Hills R, Avery S, Patil SS, et al. A phase Ib study combining the mTOR inhibitor everolimus (RAD001) with low-dose Cytarabine in untreated elderly AML. Orange County Convention Center, Orlando, FL, USA; Nov 2010.

    Google Scholar 

  37. Park S, Chapuis N, Saint Marcoux F, Recher C, Prebet T, Chevallier P, et al. A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia. 2013;27(7):1479–86.

    Article  CAS  PubMed  Google Scholar 

  38. Wei AH, Sadawarte S, Catalano J, Schwarer AP, Avery S, Patil SS, et al. Clinical activity of Azacitidine in combination with the oral mTOR inhibitor everolimus (RAD001) in relapsed and refractory AML: interim analysis of a phase Ib/II study. Blood. Orange County Convention Center, Orlando, FL, USA; Nov 2010.

    Google Scholar 

  39. Liesveld JL, O’Dwyer K, Walker A, Becker MW, Ifthikharuddin JJ, Mulford D, et al. A phase I study of decitabine and rapamycin in relapsed/refractory AML. Leuk Res. 2013;37(12):1622–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sampath D, Malik A, Plunkett W, Nowak B, Williams B, Burton M, et al. Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Akt-inhibitor triciribine phosphate monohydrate in patients with advanced hematologic malignancies. Leuk Res. 2013;37(11):1461–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2014;20(8):2226–35.

    Article  CAS  Google Scholar 

  42. Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T, et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia. 2006;20(2):230–8.

    Article  CAS  PubMed  Google Scholar 

  43. Follo MY, Mongiorgi S, Bosi C, Cappellini A, Finelli C, Chiarini F, et al. The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res. 2007;67(9):4287–94.

    Article  CAS  PubMed  Google Scholar 

  44. Platzbecker U, Haase M, Herbst R, Hanel A, Voigtmann K, Thiede CH, et al. Activity of sirolimus in patients with myelodysplastic syndrome – results of a pilot study. Br J Haematol. 2005;128(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  45. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C. BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood. 2002;100(10):3767–75.

    Article  CAS  PubMed  Google Scholar 

  46. Sillaber C, Mayerhofer M, Bohm A, Vales A, Gruze A, Aichberger KJ, et al. Evaluation of antileukaemic effects of rapamycin in patients with imatinib-resistant chronic myeloid leukaemia. Eur J Clin Invest. 2008;38(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  47. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A. 2010;107(28):12469–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Airiau K, Mahon FX, Josselin M, Jeanneteau M, Belloc F. PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis. 2013;4:e827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T, et al. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther. 2014;15(2):207–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol: Off J Am Soc Clin Oncol. 2009;27(31):5175–81.

    Article  CAS  Google Scholar 

  51. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114(3):647–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kharas MG, Deane JA, Wong S, O'Bosky KR, Rosenberg N, Witte ON, et al. Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood. 2004;103(11):4268–75.

    Article  CAS  PubMed  Google Scholar 

  53. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang C, Ryu YK, Chen TZ, Hall CP, Webster DR, Kang MH. Synergistic activity of rapamycin and dexamethasone in vitro and in vivo in acute lymphoblastic leukemia via cell-cycle arrest and apoptosis. Leuk Res. 2012;36(3):342–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Teachey DT, Sheen C, Hall J, Ryan T, Brown VI, Fish J, et al. mTOR inhibitors are synergistic with methotrexate: an effective combination to treat acute lymphoblastic leukemia. Blood. 2008;112(5):2020–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Batista A, Barata JT, Raderschall E, Sallan SE, Carlesso N, Nadler LM, et al. Targeting of active mTOR inhibits primary leukemia T cells and synergizes with cytotoxic drugs and signaling inhibitors. Exp Hematol. 2011;39(4):457–72. e3.

    Article  CAS  PubMed  Google Scholar 

  57. Houghton PJ, Morton CL, Gorlick R, Lock RB, Carol H, Reynolds CP, et al. Stage 2 combination testing of rapamycin with cytotoxic agents by the Pediatric Preclinical Testing Program. Mol Cancer Ther. 2010;9(1):101–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A, et al. Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res. 2010;70(20):8097–107.

    Article  CAS  PubMed  Google Scholar 

  59. Rheingold SR, Sacks N, Chang YJ, Brown VI, Teachey M, David T, Lange BJ, et al. A phase I trial of sirolimus (rapamycin) in pediatric patients with relapsed/refractory leukemia. Georgia International Convention Center, Atlanta, GA, USA. 2007.

    Google Scholar 

  60. Daver N, Boumber Y, Kantarjian H, Ravandi-Kashani F, Cortes JE, Rytting M, et al. A phase I/II study of the mTOR inhibitor everolimus in combination with hyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21(12):2704–14.

    Article  CAS  Google Scholar 

  61. Xing H, Yang X, Liu T, Lin J, Chen X, Gong Y. The study of resistant mechanisms and reversal in an imatinib resistant Ph + acute lymphoblastic leukemia cell line. Leuk Res. 2012;36(4):509–13.

    Article  CAS  PubMed  Google Scholar 

  62. Ding J, Romani J, Zaborski M, MacLeod RA, Nagel S, Drexler HG, et al. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. PLoS One. 2013;8(12), e83510.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, et al. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One. 2013;8(11):e80070.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Davids MS, Brown JR. Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma. 2012;53(12):2362–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Fruman DA. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr Opin Immunol. 2004;16(3):314–20.

    Article  CAS  PubMed  Google Scholar 

  66. Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F, et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood. 2003;101(1):278–85.

    Article  CAS  PubMed  Google Scholar 

  67. Decker T, Sandherr M, Goetze K, Oelsner M, Ringshausen I, Peschel C. A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann Hematol. 2009;88(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  68. Zent CS, LaPlant BR, Johnston PB, Call TG, Habermann TM, Micallef IN, et al. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer. 2010;116(9):2201–7.

    PubMed Central  PubMed  Google Scholar 

  69. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Wei M, Wang X, Song Z, Jiao M, Ding J, Meng LH, et al. Targeting PI3Kdelta: emerging therapy for chronic lymphocytic leukemia and beyond. Med Res Rev. 2015;35(4):720–52.

    Article  CAS  PubMed  Google Scholar 

  71. IPI-145 shows promise in CLL patients. Cancer Discov. 2014;4(2):136.

    Google Scholar 

  72. Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L, et al. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci. 2005;118(Pt 20):4879–88.

    Article  CAS  PubMed  Google Scholar 

  73. Lemmon MA. Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol. 2008;9(2):99–111.

    Article  CAS  PubMed  Google Scholar 

  74. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32.

    Article  CAS  PubMed  Google Scholar 

  75. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010;107(29):13075–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9.

    Article  CAS  PubMed  Google Scholar 

  78. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4.

    Article  PubMed  CAS  Google Scholar 

  79. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Hideshima T, Nakamura N, Chauhan D, Anderson KC. Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene. 2001;20(42):5991–6000.

    Article  CAS  PubMed  Google Scholar 

  83. Steinbrunn T, Stuhmer T, Gattenlohner S, Rosenwald A, Mottok A, Unzicker C, et al. Mutated RAS and constitutively activated Akt delineate distinct oncogenic pathways, which independently contribute to multiple myeloma cell survival. Blood. 2011;117(6):1998–2004.

    Article  CAS  PubMed  Google Scholar 

  84. Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC, et al. The AKT kinase is activated in multiple myeloma tumor cells. Blood. 2001;98(9):2853–5.

    Article  CAS  PubMed  Google Scholar 

  85. Guenther A, Baumann P, Burger R, Klapper W, Schmidmaier R, Gramatzki M. Phase I/II study with single agent everolimus (RAD001) in patients with relapsed or refractory multiple myeloma. Ernest N. Morial Convention Center, New Orleans, LA, USA. 2009.

    Google Scholar 

  86. Farag SS, Zhang S, Jansak BS, Wang X, Kraut E, Chan K, et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res. 2009;33(11):1475–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Ghobrial IM, Weller E, Vij R, Munshi NC, Banwait R, Bagshaw M, et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol. 2011;12(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  88. Yee AJ, Hari P, Marcheselli R, Mahindra AK, Cirstea DD, Scullen TA, et al. Outcomes in patients with relapsed or refractory multiple myeloma in a phase I study of everolimus in combination with lenalidomide. Br J Haematol. 2014;166(3):401–9.

    Article  CAS  PubMed  Google Scholar 

  89. Richardson PG, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin D, et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(32):4243–9.

    Article  CAS  Google Scholar 

  90. Jakubowiak AJ, Richardson PG, Zimmerman T, Alsina M, Kaufman JL, Kandarpa M, et al. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br J Haematol. 2012;158(4):472–80.

    Article  CAS  PubMed  Google Scholar 

  91. Aeterna zentaris to discontinue phase 3 trial in multiple myeloma with perifosine following Data Safety Monitoring Board recommendation [press release]. March 11, 2013. Retrieved from http://www.aezsinc.com/en/page.php?p=60&q=550.

  92. Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA, et al. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood. 2014;124(14):2190–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, et al. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br J Haematol. 2014;165(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  94. Pfeifer M, Grau M, Lenze D, Wenzel SS, Wolf A, Wollert-Wulf B, et al. PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(30):12420–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Choi MY, Kipps TJ. Inhibitors of B-cell receptor signaling for patients with B-cell malignancies. Cancer J. 2012;18(5):404–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. 2010;17(3):249–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Witzig TE, Geyer SM, Ghobrial I, Inwards DJ, Fonseca R, Kurtin P, et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol: Off J Am Soc Clin Oncol. 2005;23(23):5347–56.

    Article  CAS  Google Scholar 

  98. Witzig TE, Reeder CB, LaPlant BR, Gupta M, Johnston PB, Micallef IN, et al. A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia. 2011;25(2):341–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Johnston PB, Inwards DJ, Colgan JP, Laplant BR, Kabat BF, Habermann TM, et al. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol. 2010;85(5):320–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Guidetti A, Viviani S, Marchianò A, Dodero A, Farina L, Locatelli SL, et al. Dual targeted therapy with the AKT inhibitor perifosine and the multikinase inhibitor sorafenib in patients with relapsed/refractory lymphomas: final results of a phase II trial. Georgia International Convention Center, Atlanta, GA, USA. 2012.

    Google Scholar 

  101. Oki Y, Fanale MA, Romaguera JE, Fayad L, Fowler N, Copeland AR, et al. Phase II study of an AKT inhibitor MK2206 in patients with relapsed or refractory lymphoma. Moscone Conference Center, San Francisco, CA, United States. 2014.

    Google Scholar 

  102. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  103. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Brown JR, Hamadani M, Arnason J, Karlin L, Hayslip J, Wagner-Johnston N, et al. SAR245409 Monotherapy in relapsed/refractory follicular lymphoma: preliminary results from the phase II ARD12130 study. Ernest N. Morial Convention Center, New Orleans, LA, USA. 2013.

    Google Scholar 

  105. Dreyling M, Morschhauser F, Bron D, Bouabdallah K, Vitolo U, Linton K, et al. Preliminary results of a phase II study of single agent BAY 80-6946, a novel PI3K inhibitor, in patients with relapsed/refractory, indolent or aggressive lymphoma. ASH 2013 Ernest N. Morial Convention Center, New Orleans, LA, USA, 2013.

    Google Scholar 

  106. Curran E, Smith SM. Phosphoinositide 3-kinase inhibitors in lymphoma. Curr Opin Oncol. 2014;26(5):469–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem. 2001;276(19):16201–6.

    Article  CAS  PubMed  Google Scholar 

  108. Maas A, Hendriks RW. Role of Bruton’s tyrosine kinase in B cell development. Dev Immunol. 2001;8(3–4):171–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wang M, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Single-agent Ibrutinib demonstrates safety and durability of response at 2 years follow-up in patients with relapsed or refractory mantle cell lymphoma: updated results of an international, multicenter, open-label phase 2 study. Moscone Conference Center, San Francisco, CA, USA. 2014.

    Google Scholar 

  111. Wilson WH, Gerecitano JF, Goy A, de Vos S, Kenkre VP, Barr PM, et al. The Bruton’s tyrosine kinase (BTK) inhibitor, ibrutinib (PCI-32765), has preferential activity in the ABC subtype of relapsed/refractory de novo diffuse large B-cell lymphoma (DLBCL): interim results of a multicenter, open-label, phase 2 study. Georgia International Convention Center, Atlanta, GA, USA. 2012.

    Google Scholar 

  112. Bartlett NL, LaPlant BR, Qi J, Ansell SM, Kuruvilla JG, Reeder CB, et al. Ibrutinib monotherapy in relapsed/refractory follicular lymphoma (FL): preliminary results of a Phase 2 Consortium (P2C) Trial. Moscone Conference Center, San Francisco, CA, USA. 2014.

    Google Scholar 

  113. Younes A, Zinzani PL, Sehn LH, Johnson PW, Gascoyne RD, Ahmadi T, et al. A randomized, double-blind, placebo-controlled phase 3 study of ibrutinib in combination with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in subjects with newly diagnosed nongerminal center B-cell subtype of diffuse large B-cell lymphoma (DLBCL). McCormick Place in Chicago, IL, USA. 2014.

    Google Scholar 

  114. Wang M, Gordon LI, Rule S, Goy A, Hermine O, Rizo A, et al. A phase III study of ibrutinib in combination with bendamustine and rituximab (BR) in elderly patients with newly diagnosed mantle cell lymphoma (MCL). McCormick Place in Chicago, IL, USA. 2013.

    Google Scholar 

  115. Fowler NH, Hiddemann W, Leonard J, Rose E, Ahmadi T, Vermeulen J, et al. A phase 3 study of ibrutinib in combination with either bendamustine and rituximab (BR) or rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in patients with previously treated follicular lymphoma or marginal zone lymphoma. McCormick Place in Chicago, IL, USA, 2014.

    Google Scholar 

  116. Leleu X, Jia X, Runnels J, Ngo HT, Moreau AS, Farag M, et al. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood. 2007;110(13):4417–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Roccaro AM, Sacco A, Husu EN, Pitsillides C, Vesole S, Azab AK, et al. Dual targeting of the PI3K/Akt/mTOR pathway as an antitumor strategy in Waldenstrom macroglobulinemia. Blood. 2010;115(3):559–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Ghobrial IM, Witzig TE, Gertz M, LaPlant B, Hayman S, Camoriano J, et al. Long-term results of the phase II trial of the oral mTOR inhibitor everolimus (RAD001) in relapsed or refractory Waldenstrom Macroglobulinemia. Am J Hematol. 2014;89(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  119. Treon SP, Tripsas CK, Meid K, Patterson C, Heffner LT, Eradat H, et al. Prospective, multicenter study of the Mtor inhibitor everolimus (RAD001) as primary therapy in Waldenstrom’s macroglobulinemia. Blood. 2013;122(21):1822.

    Google Scholar 

  120. Ghobrial IM, Boswell EN, Chuma S, Banwait R, Hanlon C, Leblebjian H, et al. Phase I/II trial of Everolimus, Bortezomib and Rituximab in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Ernest N. Morial Convention Center, New Orleans, LA, USA. 2013.

    Google Scholar 

  121. Ghobrial IM, Roccaro A, Hong F, Weller E, Rubin N, Leduc R, et al. Clinical and translational studies of a phase II trial of the novel oral Akt inhibitor perifosine in relapsed or relapsed/refractory Waldenstrom’s macroglobulinemia. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(3):1033–41.

    Article  CAS  Google Scholar 

  122. Sahin I, Azab F, Mishima Y, Moschetta M, Tsang B, Glavey SV, et al. Targeting survival and cell trafficking in multiple myeloma and Waldenstrom macroglobulinemia using pan-class I PI3K inhibitor, buparlisib. Am J Hematol. 2014;89(11):1030–6.

    Article  CAS  PubMed  Google Scholar 

  123. FDA expands approved use of Imbruvica for rare form of non-Hodgkin lymphoma: first drug approved to treat Waldenström’s macroglobulinemia. US Food and Drug Administration. 2015. [FDA News Release] Retrieved from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm432123.htm.

  124. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y, et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood. 2012;120(9):1877–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    Article  CAS  PubMed  Google Scholar 

  126. Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood. 2013;122(7):1222–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag France

About this chapter

Cite this chapter

Shen, J., Kelly, K.R. (2016). The Role of PI3K/AKT/mTOR Inhibitors in the Treatment of Hematological Malignancies. In: Mita, M., Mita, A., Rowinsky, E. (eds) mTOR Inhibition for Cancer Therapy: Past, Present and Future. Springer, Paris. https://doi.org/10.1007/978-2-8178-0492-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0492-7_7

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0491-0

  • Online ISBN: 978-2-8178-0492-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics