Skip to main content

Abstract

Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling is required for normal development, growth, and physiology. Mutations in multiple key regulators of this pathway have been reported to occur leading to aberrant signaling and have been implicated in a number of pathologies, including metabolic syndrome. This chapter will review the major proteins involved in PI3K/mTOR signaling and discuss the negative feedback loops which maintain homeostasis. The therapeutic advantages and limitations of PI3K and/or catalytic mTOR inhibitors, which are currently in clinical development, will be discussed. We also report studies using these inhibitors along with genetic models to delete or overexpress key players in PI3K/mTOR signaling pathways in yeast, worms, drosophila, and mice, which have been instrumental in elucidating the functions of these proteins in normal and disease states. Particular attention has been focused on the role of PI3K/mTOR signaling in proliferation, translation, metabolism (including energy balance regulation and metabolic syndrome), autophagy, and differentiation.

$Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Long X, et al. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol. 2002;12(17):1448–61.

    Article  CAS  PubMed  Google Scholar 

  2. Oldham S, et al. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14(21):2689–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Zhang H, et al. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14(21):2712–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gangloff YG, et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol. 2004;24(21):9508–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Murakami M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24(15):6710–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Matsuo T, et al. Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J. 2003;22(12):3073–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Peterson TR, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kaizuka T, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem. 2010;285(26):20109–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kim DH, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895–904.

    Article  CAS  PubMed  Google Scholar 

  11. Hara K, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  12. Schalm SS, Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol. 2002;12(8):632–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sancak Y, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, et al. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036–44.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu PP, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yu Y, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lamming DW, et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335(6076):1638–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Thomas HE, et al. mTOR inhibitors synergize on regression, reversal of gene expression, and autophagy in hepatocellular carcinoma. Sci Transl Med. 2012;4(139):139ra84.

    Google Scholar 

  19. Jacinto E, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8.

    Article  CAS  PubMed  Google Scholar 

  20. Loewith R, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68.

    Article  CAS  PubMed  Google Scholar 

  21. Sarbassov DD, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  CAS  PubMed  Google Scholar 

  22. Jacinto E, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.

    Article  CAS  PubMed  Google Scholar 

  23. Frias MA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol. 2006;16(18):1865–70.

    Article  CAS  PubMed  Google Scholar 

  24. Pearce LR, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pearce LR, et al. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J. 2011;436(1):169–79.

    Article  CAS  PubMed  Google Scholar 

  26. Thedieck K, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One. 2007;2(11):e1217.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Sarbassov DD, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14(14):1296–302.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Martinez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J. 2008;416(3):375–85.

    Article  CAS  PubMed  Google Scholar 

  29. Ikenoue T, et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008;27(14):1919–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nobukuni T, et al. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A. 2005;102(40):14238–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vander Haar E, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  32. Garami A, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell. 2003;11(6):1457–66.

    Article  CAS  PubMed  Google Scholar 

  33. Long X, et al. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15(8):702–13.

    Article  CAS  PubMed  Google Scholar 

  34. Haas DW, Hagedorn CH. Protein kinase C phosphorylates both serine and threonine residues of the mRNA cap binding protein eIF-4E. Second Messengers Phosphoproteins. 1992;14(1–2):55–63.

    CAS  PubMed  Google Scholar 

  35. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8(5):387–98.

    Article  CAS  PubMed  Google Scholar 

  36. Inoki K, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell. 2006;126(5):955–68.

    Article  CAS  PubMed  Google Scholar 

  37. Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130(3):440–55.

    Article  CAS  PubMed  Google Scholar 

  38. Brugarolas J, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004;18(23):2893–904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. DeYoung MP, et al. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008;22(2):239–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Reiling JH, Hafen E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev. 2004;18(23):2879–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  42. Shaw RJ, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kalender A, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010;11(5):390–401.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Gwinn DM, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chantranupong L, et al. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 2014;9(1):1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008;134(3):451–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Feng Z, et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A. 2005;102(23):8204–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem. 2005;280(38):33076–82.

    Article  CAS  PubMed  Google Scholar 

  49. Kim E, et al. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol. 2008;10(8):935–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sancak Y, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Efeyan A, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 2013;493(7434):679–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Sancak Y, et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bar-Peled L, et al. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150(6):1196–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Tsun ZY, et al. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. Mol Cell. 2013;52(4):495–505.

    Article  CAS  PubMed  Google Scholar 

  55. Menon S, et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell. 2014;156(4):771–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Zoncu R, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011;334(6056):678–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Bar-Peled L, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340(6136):1100–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Panchaud N, Peli-Gulli MP, De Virgilio C. Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci Signal. 2013;6(277):ra42.

    Google Scholar 

  59. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zinzalla V, et al. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–68.

    Article  CAS  PubMed  Google Scholar 

  61. Huang J, et al. The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol. 2008;28(12):4104–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans. 2009;37(Pt 1):217–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Yang Q, et al. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci U S A. 2006;103(18):6811–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Goncharova EA, et al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol Cell Biol. 2011;31(12):2484–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Kamimura Y, et al. PIP3-independent activation of TorC2 and PKB at the cell’s leading edge mediates chemotaxis. Curr Biol. 2008;18(14):1034–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Charest PG, et al. A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. Dev Cell. 2010;18(5):737–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Cai H, et al. Ras-mediated activation of the TORC2-PKB pathway is critical for chemotaxis. J Cell Biol. 2010;190(2):233–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Dalle Pezze P, et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci Signal. 2012;5(217):ra25.

    Google Scholar 

  70. Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010;22(2):169–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Radimerski T, et al. Lethality of Drosophila lacking TSC tumor suppressor function rescued by reducing dS6K signaling. Genes Dev. 2002;16(20):2627–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Radimerski T, et al. dS6K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol. 2002;4(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  73. Jaeschke A, et al. Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol. 2002;159(2):217–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Harrington LS, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Hartley D, Cooper GM. Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem. 2002;85(2):304–14.

    Article  CAS  PubMed  Google Scholar 

  76. Haruta T, et al. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol. 2000;14(6):783–94.

    Article  CAS  PubMed  Google Scholar 

  77. Takano A, et al. Mammalian target of rapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptor substrate 1 and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol. 2001;21(15):5050–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Carracedo A, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Zhang H, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest. 2007;117(3):730–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Gupta S, et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957–68.

    Article  CAS  PubMed  Google Scholar 

  81. Ma L, et al. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell. 2005;121(2):179–93.

    Article  CAS  PubMed  Google Scholar 

  82. Wells V, Downward J, Mallucci L. Functional inhibition of PI3K by the betaGBP molecule suppresses Ras-MAPK signalling to block cell proliferation. Oncogene. 2007;26(55):7709–14.

    Article  CAS  PubMed  Google Scholar 

  83. Wennstrom S, Downward J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol. 1999;19(6):4279–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Dibble CC, Asara JM, Manning BD. Characterization of Rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol Cell Biol. 2009;29(21):5657–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Vasudevan KM, et al. AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell. 2009;16(1):21–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Sarbassov DD, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  87. Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 2006;3(6):393–402.

    Article  CAS  PubMed  Google Scholar 

  88. Feldman ME, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009;7(2):e38.

    Article  PubMed  CAS  Google Scholar 

  89. Thoreen CC, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009;284(12):8023–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. O'Reilly KE, et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006;66(3):1500–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Cloughesy TF, et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008;5(1):e8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Meric-Bernstam F, et al. PIK3CA/PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors. Clin Cancer Res. 2012;18(6):1777–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Choo AY, et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci U S A. 2008;105(45):17414–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Maira SM, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–63.

    Article  CAS  PubMed  Google Scholar 

  95. Benjamin D, et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–80.

    Article  CAS  PubMed  Google Scholar 

  96. Bendell JC, et al. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest New Drugs. 2015;33(2):463–71.

    Article  CAS  PubMed  Google Scholar 

  97. Britten CD, et al. Phase I study of PF-04691502, a small-molecule, oral, dual inhibitor of PI3K and mTOR, in patients with advanced cancer. Invest New Drugs. 2014;32(3):510–7.

    Article  CAS  PubMed  Google Scholar 

  98. Markman B, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann Oncol. 2012;23(9):2399–408.

    Article  CAS  PubMed  Google Scholar 

  99. Shapiro GI, et al. First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res. 2015;21(8):1888–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Mahadevan D, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer. 2012;48(18):3319–27.

    Article  CAS  PubMed  Google Scholar 

  101. Nyfeler B, et al. RAD001 enhances the potency of BEZ235 to inhibit mTOR signaling and tumor growth. PLoS One. 2012;7(11):e48548.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Mazzoletti M, et al. Combination of PI3K/mTOR inhibitors: antitumor activity and molecular correlates. Cancer Res. 2011;71(13):4573–84.

    Article  CAS  PubMed  Google Scholar 

  103. Werzowa J, et al. Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. J Invest Dermatol. 2011;131(2):495–503.

    Article  CAS  PubMed  Google Scholar 

  104. Xu CX, et al. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One. 2011;6(6):e20899.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Liu Q, et al. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics. J Biol Chem. 2012;287(13):9742–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Duncan JS, Haystead TA, Litchfield DW. Chemoproteomic characterization of protein kinase inhibitors using immobilized ATP. Methods Mol Biol. 2012;795:119–34.

    Article  CAS  PubMed  Google Scholar 

  107. Kong D, Yaguchi S, Yamori T. Effect of ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor, on DNA-dependent protein kinase. Biol Pharm Bull. 2009;32(2):297–300.

    Article  CAS  PubMed  Google Scholar 

  108. Beuvink I, et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 2005;120(6):747–59.

    Article  CAS  PubMed  Google Scholar 

  109. Zardavas D, Baselga J, Piccart M. Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol. 2013;10(4):191–210.

    Article  CAS  PubMed  Google Scholar 

  110. Miller BW, et al. FDA approval: idelalisib monotherapy for the treatment of patients with follicular lymphoma and small lymphocytic lymphoma. Clin Cancer Res. 2015;21(7):1525–9.

    Article  CAS  PubMed  Google Scholar 

  111. Juric D, et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature. 2015;518(7538):240–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Chakrabarty A, et al. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc Natl Acad Sci U S A. 2012;109(8):2718–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Zheng XF, et al. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 1995;82(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  114. Barbet NC, et al. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell. 1996;7(1):25–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Guertin DA, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell. 2006;11(6):859–71.

    Article  CAS  PubMed  Google Scholar 

  116. Shiota C, et al. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev Cell. 2006;11(4):583–9.

    Article  CAS  PubMed  Google Scholar 

  117. Albers MW, et al. FKBP-rapamycin inhibits a cyclin-dependent kinase activity and a cyclin D1-Cdk association in early G1 of an osteosarcoma cell line. J Biol Chem. 1993;268(30):22825–9.

    CAS  PubMed  Google Scholar 

  118. Dowling RJ, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Montagne J, et al. Drosophila S6 kinase: a regulator of cell size. Science. 1999;285(5436):2126–9.

    Article  CAS  PubMed  Google Scholar 

  120. Espeillac C, et al. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy. J Clin Invest. 2011;121(7):2821–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Gu Y, et al. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes. 2011;60(3):827–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Zhu Y, et al. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS One. 2013;8(1):e54221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Gentilella A, Kozma SC, Thomas G. A liaison between mTOR signaling, ribosome biogenesis and cancer. Biochim Biophys Acta. 2015;1849(7):812–20.

    Article  CAS  PubMed  Google Scholar 

  124. Mathews M, Hershey JWB, Sonenberg N. Translational control in biology and medicine. 3rd ed. Cold Spring Harbor monograph series;. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007. 934 p.

    Google Scholar 

  125. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136(4):731–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10(4):301–9.

    Article  PubMed  CAS  Google Scholar 

  128. Ruggero D, et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med. 2004;10(5):484–6.

    Article  CAS  PubMed  Google Scholar 

  129. Rosen N, She QB. AKT and cancer–is it all mTOR? Cancer Cell. 2006;10(4):254–6.

    Article  CAS  PubMed  Google Scholar 

  130. Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway–beyond rapalogs. Oncotarget. 2010;1(7):530–43.

    Article  PubMed Central  PubMed  Google Scholar 

  131. Hsieh AC, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485(7396):55–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312(Pt 1):163–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77(3):731–58.

    CAS  PubMed  Google Scholar 

  134. Morita M, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  135. Cunningham JT, et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450(7170):736–40.

    Article  CAS  PubMed  Google Scholar 

  136. Gingras AC, et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15(21):2852–64.

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Gingras AC, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999;13(11):1422–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  138. Gygi SP, et al. Protein analysis by mass spectrometry and sequence database searching: tools for cancer research in the post-genomic era. Electrophoresis. 1999;20(2):310–9.

    Article  CAS  PubMed  Google Scholar 

  139. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  CAS  PubMed  Google Scholar 

  140. Levy S, et al. Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci U S A. 1991;88(8):3319–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Jefferies HB, et al. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci U S A. 1994;91(10):4441–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Jefferies HB, et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16(12):3693–704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Thoreen CC, et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485(7396):109–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Aoki K, et al. LARP1 specifically recognizes the 3′ terminus of poly(A) mRNA. FEBS Lett. 2013;587(14):2173–8.

    Article  CAS  PubMed  Google Scholar 

  145. Tcherkezian J, et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev. 2014;28(4):357–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Pyronnet S, et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999;18(1):270–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Grzmil M, et al. MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas. J Clin Invest. 2014;124(2):742–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Pardo OE, Seckl MJ. S6K2: the neglected S6 kinase family member. Front Oncol. 2013;3:191.

    Article  PubMed Central  PubMed  Google Scholar 

  149. Holz MK, et al. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.

    Article  CAS  PubMed  Google Scholar 

  150. Dorrello NV, et al. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314(5798):467–71.

    Article  CAS  PubMed  Google Scholar 

  151. Wang X, et al. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  152. Ben-Sahra I, et al. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339(6125):1323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Robitaille AM, et al. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science. 2013;339(6125):1320–3.

    Article  CAS  PubMed  Google Scholar 

  154. Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43(4):2466–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Mayer C, et al. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 2004;18(4):423–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Liwak U, et al. Tumor suppressor PDCD4 represses internal ribosome entry site-mediated translation of antiapoptotic proteins and is regulated by S6 kinase 2. Mol Cell Biol. 2012;32(10):1818–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Brugarolas JB, et al. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 2003;4(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  158. Duvel K, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Hudson CC, et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002;22(20):7004–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  160. Laughner E, et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21(12):3995–4004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.

    Article  CAS  PubMed  Google Scholar 

  162. Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009;19(22):R1046–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Li S, Brown MS, Goldstein JL. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc Natl Acad Sci U S A. 2010;107(8):3441–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Porstmann T, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8(3):224–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Wang BT, et al. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc Natl Acad Sci U S A. 2011;108(37):15201–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Peterson TR, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Kim JE, Chen J. regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes. 2004;53(11):2748–56.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang HH, et al. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One. 2009;4(7):e6189.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  169. Carnevalli LS, et al. S6K1 plays a critical role in early adipocyte differentiation. Dev Cell. 2010;18(5):763–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Le Bacquer O, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest. 2007;117(2):387–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  171. Polak P, et al. Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab. 2008;8(5):399–410.

    Article  CAS  PubMed  Google Scholar 

  172. Um SH, et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004;431(7005):200–5.

    Article  CAS  PubMed  Google Scholar 

  173. Cybulski N, et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc Natl Acad Sci U S A. 2009;106(24):9902–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Kumar A, et al. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes. 2010;59(6):1397–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Yao Y, et al. BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation. Sci Signal. 2013;6(257):ra2.

    Google Scholar 

  176. Hung CM, et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014;8(1):256–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Philp A, Hamilton DL, Baar K. Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985).,2011;110(2):561–8.

    Google Scholar 

  178. Bentzinger CF, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008;8(5):411–24.

    Article  CAS  PubMed  Google Scholar 

  179. Cota D, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006;312(5775):927–30.

    Article  CAS  PubMed  Google Scholar 

  180. Cota D, et al. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci. 2008;28(28):7202–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Blouet C, Ono H, Schwartz GJ. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis. Cell Metab. 2008;8(6):459–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Sengupta S, et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468(7327):1100–4.

    Article  CAS  PubMed  Google Scholar 

  183. Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.

    Article  CAS  PubMed  Google Scholar 

  184. Tremblay F, et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A. 2007;104(35):14056–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Khamzina L, et al. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology. 2005;146(3):1473–81.

    Article  CAS  PubMed  Google Scholar 

  186. Rachdi L, et al. Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci U S A. 2008;105(27):9250–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Shigeyama Y, et al. Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol. 2008;28(9):2971–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. Pende M, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature. 2000;408(6815):994–7.

    Article  CAS  PubMed  Google Scholar 

  189. Elghazi L, et al. Decreased IRS signaling impairs beta-cell cycle progression and survival in transgenic mice overexpressing S6K in beta-cells. Diabetes. 2010;59(10):2390–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  190. Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7(2):95–6.

    Article  CAS  PubMed  Google Scholar 

  191. Bae EJ, et al. Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance. J Biol Chem. 2012;287(22):18769–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  192. Stallone G, et al. Management of side effects of sirolimus therapy. Transplantation. 2009;87(8 Suppl):S23–6.

    Article  CAS  PubMed  Google Scholar 

  193. Barlow AD, Nicholson ML, Herbert TP. Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms. Diabetes. 2013;62(8):2674–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  194. Shang L, et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Kim J, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Nazio F, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013;15(4):406–16.

    Article  CAS  PubMed  Google Scholar 

  197. Egan DF, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Martina JA, et al. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy. 2012;8(6):903–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Kuma A, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–6.

    Article  CAS  PubMed  Google Scholar 

  200. Komatsu M, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Sou YS, et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell. 2008;19(11):4762–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62.

    Article  CAS  PubMed  Google Scholar 

  203. Laderoute KR, et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol. 2006;26(14):5336–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 2010;20(12):1093–8.

    Article  CAS  PubMed  Google Scholar 

  205. Fan QW, et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci Signal. 2010;3(147):ra81.

    Google Scholar 

  206. Song YJ, et al. Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett. 2013;339(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  207. Bray K, et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS One. 2012;7(7):e41831.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. Yang Z, et al. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One. 2011;6(12):e28405.

    Google Scholar 

  209. Fang DD, et al. Antitumor efficacy of the dual PI3K/mTOR inhibitor PF-04691502 in a human xenograft tumor model derived from colorectal cancer stem cells harboring a mutation. PLoS One. 2013;8(6):e67258.

    Google Scholar 

  210. Dubrovska A, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 2009;106(1):268–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. Kolev VN, et al. PI3K/mTOR dual inhibitor VS-5584 preferentially targets cancer stem cells. Cancer Res. 2015;75(2):446–55.

    Article  CAS  PubMed  Google Scholar 

  212. Sunayama J, et al. Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro Oncol. 2010;12(12):1205–19.

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Dann SG, Selvaraj A, Thomas G. mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med. 2007;13(6):252–9.

    Article  CAS  PubMed  Google Scholar 

  214. Sampath P, et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell. 2008;2(5):448–60.

    Article  CAS  PubMed  Google Scholar 

  215. Santos AC, Lehmann R. Germ cell specification and migration in Drosophila and beyond. Curr Biol. 2004;14(14):R578–89.

    Article  CAS  PubMed  Google Scholar 

  216. Strome S, Lehmann R. Germ versus soma decisions: lessons from flies and worms. Science. 2007;316(5823):392–3.

    Article  CAS  PubMed  Google Scholar 

  217. Easley CA, et al. mTOR-mediated activation of p70 S6K induces differentiation of pluripotent human embryonic stem cells. Cell Reprogram. 2010;12(3):263–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  218. Castilho RM, et al. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell. 2009;5(3):279–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  219. Faller WJ, et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature. 2015;517(7535):497–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  220. Agrawal P, et al. DEPTOR is a stemness factor that regulates pluripotency of embryonic stem cells. J Biol Chem. 2014;289(46):31818–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  221. Sunayama J, et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells. 2010;28(11):1930–9.

    Article  CAS  PubMed  Google Scholar 

  222. Zhou J, et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci U S A. 2007;104(41):16158–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  223. Matsumoto K, et al. mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res. 2009;69(18):7160–4.

    Article  CAS  PubMed  Google Scholar 

  224. Yang Z, et al. Transient mTOR inhibition facilitates continuous growth of liver tumors by modulating the maintenance of CD133+ cell populations. PLoS One. 2011;6(12):e28405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  225. LaFever L, et al. Specific roles of target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary. Development. 2010;137(13):2117–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  226. Sun P, et al. TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation. Development. 2010;137(15):2461–9.

    Article  CAS  PubMed  Google Scholar 

  227. Amcheslavsky A, Jiang J, Ip YT. Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell. 2009;4(1):49–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  228. Biteau B, Jasper H. EGF signaling regulates the proliferation of intestinal stem cells in Drosophila. Development. 2011;138(6):1045–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  229. Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell. 2010;143(7):1161–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  230. Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature. 2011;471(7339):508–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  231. Martin SK, et al. The differential roles of mTORC1 and mTORC2 in mesenchymal stem cell differentiation. Stem Cells. 2014;33(4):1359–65.

    Article  CAS  Google Scholar 

  232. Bercury KK, et al. Conditional ablation of raptor or rictor has differential impact on oligodendrocyte differentiation and CNS myelination. J Neurosci. 2014;34(13):4466–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to G. Doerman for the assistance with preparation of figures. H.E.T is supported by a faculty pilot project grant by the Department of Internal Medicine, University of Cincinnati, OH. G.T. is supported by grants from the Instituto de Salud Carlos III (IIS10/00015), the Spanish Ministry of Science and Innovation (SAF2014-52162), the CIG European Commission (PCIG10-GA-2011-304160), and the NIH/NCI National Cancer Institute (R01-CA158768). S.C.K is supported by grants from the Instituto de Salud Carlos III (IIS12/00002) GT and SCK are also supported by the European Regional Development Fund FEDER in Spain and from the Spanish Ministry of Economy and Competitivity (BFU2012-38867).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Thomas or Sara C. Kozma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag France

About this chapter

Cite this chapter

Thomas, H.E., da Veiga, S.R.P., Thomas, G., Kozma, S.C. (2016). The PI3K-mTOR Pathway. In: Mita, M., Mita, A., Rowinsky, E. (eds) mTOR Inhibition for Cancer Therapy: Past, Present and Future. Springer, Paris. https://doi.org/10.1007/978-2-8178-0492-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0492-7_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0491-0

  • Online ISBN: 978-2-8178-0492-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics