Skip to main content

Abstract

The use of light for the treatment of disease has been well reported in historical literature and can be traced back to ancient times. ‘Heliotherapy’, or whole body sun exposure, was popular in ancient Greece, and other ancient cultures used similar strategies for the treatment of skin diseases such as psoriasis and vitiligo. Sunlight exposure has also been used for treating other conditions, including scurvy, paralysis, oedema and muscle weakness. The potential contribution of light therapy was recognised with a Nobel Prize in 1903, for the use of carbon arc phototherapy in the treatment of cutaneous tuberculosis. Currently, the therapeutic use of light takes various forms, including UVA light exposure for skin disease, phototherapy for jaundice in neonates and photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackroyd R, Kelty C, Brown N, Reed M. The history of photodetection and photodynamic therapy. Photochem Photobiol. 2001;74(5):656–69.

    Article  CAS  PubMed  Google Scholar 

  2. Lou PJ, Jäger HR, Jones L, Theodossy T, Bown SG, Hopper C. Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. Br J Cancer. 2004;91(3):441–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bown SG, Rogowska AZ, Whitelaw DE, Lees WR, Lovat LB, Ripley P, et al. Photodynamic therapy for cancer of the pancreas. Gut. 2002;50(4):549–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Gold MH. Acne vulgaris: lasers, light sources and photodynamic therapy–an update 2007. Expert Rev Anti-Infect Ther. 2007;5(6):1059–69.

    Article  PubMed  Google Scholar 

  5. Wormald R, Evans J, Smeeth L, Henshaw K. Photodynamic therapy for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2007;(3):CD002030.

    Google Scholar 

  6. Kelly JF, Snell ME. Hematoporphyrin derivative: a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol. 1976;115(2):150–1.

    CAS  PubMed  Google Scholar 

  7. Pinthus JH, Bogaards A, Weersink R, Wilson BC, Trachtenberg J. Photodynamic therapy for urological malignancies: past to current approaches. J Urol. 2006;175(4):1201–7.

    Article  CAS  PubMed  Google Scholar 

  8. Dougherty TJ. Photodynamic therapy. Photochem Photobiol. 1993;58(6):895–900.

    Article  CAS  PubMed  Google Scholar 

  9. Bozzini G, Colin P, Betrouni N, Nevoux P, Ouzzane A, Puech P, et al. Photodynamic therapy in urology: what can we do now and where are we heading? Photodiagnosis Photodyn Ther. 2012;9(3):261–73.

    Article  CAS  PubMed  Google Scholar 

  10. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lepor H. Vascular targeted photodynamic therapy for localized prostate cancer. Rev Urol. 2008;10(4):254–61.

    PubMed Central  PubMed  Google Scholar 

  12. Schreiber S, Gross S, Brandis A, Harmelin A, Rosenbach-Belkin V, Scherz A, Salomon Y. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer. 2002;99(2):279–85.

    Article  CAS  PubMed  Google Scholar 

  13. Mazor O, Brandis A, Plaks V, Neumark E, Rosenbach-Belkin V, Salomon Y, Scherz A. WST11, a novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a model. Photochem Photobiol. 2005;81(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  14. Figge FH, Weiland GS, Manganiello LO. Studies on cancer detection and therapy; the affinity of neoplastic, embryonic, and traumatized tissue for porphyrins, metalloporphyrins, and radioactive zinc hematoporphyrin. Anat Rec. 1948;101(4):657.

    CAS  PubMed  Google Scholar 

  15. Pottier R, Kennedy JC. The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue. J Photochem Photobiol B. 1990;8(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  16. Arumainayagam N, Moore CM, Ahmed HU, Emberton M. Photodynamic therapy for focal ablation of the prostate. World J Urol. 2010;28(5):571–6.

    Article  PubMed  Google Scholar 

  17. Liu T, Wu LY, Berkman CE. Prostate-specific membrane antigen-targeted photodynamic therapy induces rapid cytoskeletal disruption. Cancer Lett. 2010;296(1):106–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sharman WM, van Lier JE, Allen CM. Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev. 2004;56(1):53–76.

    Article  CAS  PubMed  Google Scholar 

  19. Zuluaga MF, Sekkat N, Gabriel D, van den Bergh H, Lange N. Selective photodetection and photodynamic therapy for prostate cancer through targeting of proteolytic activity. Mol Cancer Ther. 2013;12(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  20. Windahl T, Andersson SO, Lofgren L. Photodynamic therapy of localised prostatic cancer. Lancet. 1990;336(8723):1139.

    Article  CAS  PubMed  Google Scholar 

  21. Chang SC, Buonaccorsi GA, MacRobert AJ, Bown SG. Interstitial photodynamic therapy in the canine prostate with disulfonated aluminum phthalocyanine and 5-aminolevulinic acid-induced protoporphyrin IX. Prostate. 1997;32(2):89–98.

    Article  CAS  PubMed  Google Scholar 

  22. Nathan TR, Whitelaw DE, Chang SC, Lees WR, Ripley PM, Payne H, et al. Photodynamic therapy for prostate cancer recurrence after radiotherapy: a phase I study. J Urol. 2002;168(4 Pt 1):1427–32.

    Article  CAS  PubMed  Google Scholar 

  23. Selman SH, Keck RW, Hampton JA. Transperineal photodynamic ablation of the canine prostate. J Urol. 1996;156(1):258–60.

    Article  CAS  PubMed  Google Scholar 

  24. Moore CM, Emberton M, Bown SG. Photodynamic therapy for prostate cancer–an emerging approach for organ-confined disease. Lasers Surg Med. 2011;43(7):768–75.

    PubMed  Google Scholar 

  25. Jankun J, Lilge L, Douplik A, Keck RW, Pestka M, Szkudlarek M, et al. Optical characteristics of the canine prostate at 665 nm sensitized with tin etiopurpurin dichloride: need for real-time monitoring of photodynamic therapy. J Urol. 2004;172(2):739–43.

    Article  CAS  PubMed  Google Scholar 

  26. Selman SH, Albrecht D, Keck RW, Brennan P, Kondo S. Studies of tin ethyl etiopurpurin photodynamic therapy of the canine prostate. J Urol. 2001;165(5):1795–801.

    Article  CAS  PubMed  Google Scholar 

  27. Hsi RA, Kapatkin A, Strandberg J, Zhu T, Vulcan T, Solonenko M, et al. Photodynamic therapy in the canine prostate using motexafin lutetium. Clin Cancer Res. 2001;7(3):651–60.

    CAS  PubMed  Google Scholar 

  28. Lee LK, Whitehurst C, Chen Q, Pantelides ML, Hetzel FW, Moore JV. Interstitial photodynamic therapy in the canine prostate. Br J Urol. 1997;80(6):898–902.

    Article  CAS  PubMed  Google Scholar 

  29. Chang SC, Buonaccorsi G, MacRobert A, Bown SG. Interstitial and transurethral photodynamic therapy of the canine prostate using meso-tetra-(m-hydroxyphenyl) chlorin. Int J Cancer. 1996;67(4):555–62.

    Article  CAS  PubMed  Google Scholar 

  30. Huang Z, Chen Q, Trncic N, LaRue SM, Brun PH, Wilson BC, et al. Effects of pd-bacteriopheophorbide (TOOKAD)-mediated photodynamic therapy on canine prostate pretreated with ionizing radiation. Radiat Res. 2004;161(6):723–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Huang Z, Haider MA, Kraft S, Chen Q, Blanc D, Wilson BC, Hetzel FW. Magnetic resonance imaging correlated with the histopathological effect of pd-bacteriopheophorbide (tookad) photodynamic therapy on the normal canine prostate gland. Lasers Surg Med. 2006;38(7):672–81.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Huang Z, Chen Q, Dole KC, Barqawi AB, Chen YK, Blanc D, et al. The effect of tookad-mediated photodynamic ablation of the prostate gland on adjacent tissues–in vivo study in a canine model. Photochem Photobiol Sci. 2007;6(12):1318–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Du KL, Mick R, Busch TM, Zhu TC, Finlay JC, Yu G, et al. Preliminary results of interstitial motexafin lutetium-mediated PDT for prostate cancer. Lasers Surg Med. 2006;38(5):427–34.

    Article  CAS  PubMed  Google Scholar 

  34. Verigos K, Stripp DC, Mick R, Zhu TC, Whittington R, Smith D, et al. Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer. J Environ Pathol Toxicol Oncol. 2006;25(1–2):373–87.

    Article  CAS  PubMed  Google Scholar 

  35. Patel H, Mick R, Finlay J, Zhu TC, Rickter E, Cengel KA, et al. Motexafin lutetium-photodynamic therapy of prostate cancer: short- and long-term effects on prostate-specific antigen. Clin Cancer Res. 2008;14(15):4869–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Trachtenberg J, Bogaards A, Weersink RA, Haider MA, Evans A, McCluskey SA, et al. Vascular targeted photodynamic therapy with palladium-bacteriopheophorbide photosensitizer for recurrent prostate cancer following definitive radiation therapy: assessment of safety and treatment response. J Urol. 2007;178(5):1974–9; discussion 1979.

    Article  CAS  PubMed  Google Scholar 

  37. Trachtenberg J, Weersink RA, Davidson SR, Haider MA, Bogaards A, Gertner MR, et al. Vascular-targeted photodynamic therapy (padoporfin, WST09) for recurrent prostate cancer after failure of external beam radiotherapy: a study of escalating light doses. BJU Int. 2008;102(5):556–62.

    Article  CAS  PubMed  Google Scholar 

  38. Zaak D, Stroka R, Hoppner M. Photodynamic therapy by means of 5 ALA induced protoporphyrin IX in human prostate cancer e preliminary results. Med Laser Appl. 2003;18:91–5.

    Article  Google Scholar 

  39. Moore CM, Nathan TR, Lees WR, Mosse CA, Freeman A, Emberton M, Bown SG. Photodynamic therapy using meso tetra hydroxy phenyl chlorin (mthpc) in early prostate cancer. Lasers Surg Med. 2006;38(5):356–63.

    Article  CAS  PubMed  Google Scholar 

  40. Arumainayagam N. Tookad soluble second generation vascular targeted photodynamic therapy (VTP) for prostate cancer: safety and feasibility. EAU Meeting, Barcelona, 2010.

    Google Scholar 

  41. Azzouzi. Results of tookad soluble vascular targeted photodynamic therapy (VTP) for low risk localised prostate cancer (PCM203). AUA Meeting, Washington, DC, 2011.

    Google Scholar 

  42. Davidson SR, Weersink RA, Haider MA, Gertner MR, Bogaards A, Giewercer D, et al. Treatment planning and dose analysis for interstitial photodynamic therapy of prostate cancer. Phys Med Biol. 2009;54(8):2293–313.

    Article  PubMed  Google Scholar 

  43. Wilson BC, Patterson MS, Lilge L. Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci. 1997;12(3):182–99.

    Article  CAS  PubMed  Google Scholar 

  44. Svensson T, Alerstam E, Einarsdóttír M, Svanberg K, Andersson-Engels S. Towards accurate in vivo spectroscopy of the human prostate. J Biophotonics. 2008;1(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  45. Moore CM, Hoh IM, Bown SG, Emberton M. Does photodynamic therapy have the necessary attributes to become a future treatment for organ-confined prostate cancer? BJU Int. 2005;96(6):754–8.

    Article  CAS  PubMed  Google Scholar 

  46. Svensson T, Andersson-Engels S, Einarsdóttír M, Svanberg K. In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. J Biomed Opt. 2007;12(1):014022.

    Article  PubMed  Google Scholar 

  47. Johansson A, Axelsson J, Andersson-Engels S, Swartling J. Realtime light dosimetry software tools for interstitial photodynamic therapy of the human prostate. Med Phys. 2007;34(11):4309–21.

    Article  CAS  PubMed  Google Scholar 

  48. Betrouni N, Lopes R, Puech P, Colin P, Mordon S. A model to estimate the outcome of prostate cancer photodynamic therapy with TOOKAD soluble WST11. Phys Med Biol. 2011;56(15):4771–83.

    Article  PubMed  Google Scholar 

  49. Jankun J, Keck RW, Skrzypczak-Jankun E, Lilge L, Selman SH. Diverse optical characteristic of the prostate and light delivery system: implications for computer modelling of prostatic photodynamic therapy. BJU Int. 2005;95(9):1237–44.

    Article  PubMed  Google Scholar 

  50. Swartling J, Axelsson J, Ahlgren G, Kälkner KM, Nilsson S, Svanberg S, et al. System for interstitial photodynamic therapy with online dosimetry: first clinical experiences of prostate cancer. J Biomed Opt. 2010;15(5):058003.

    Article  PubMed  Google Scholar 

  51. Weersink RA, Bogaards A, Gertner M, Davidson SR, Zhang K, Netchev G, et al. Techniques for delivery and monitoring of TOOKAD (WST09)-mediated photodynamic therapy of the prostate: clinical experience and practicalities. J Photochem Photobiol B. 2005;79(3):211–22.

    Article  CAS  PubMed  Google Scholar 

  52. Moore CM, Mosse CA, Allen C, Payne H, Emberton M, Bown SG. Light penetration in the human prostate: a whole prostate clinical study at 763 nm. J Biomed Opt. 2011;16(1):015003.

    Article  PubMed  Google Scholar 

  53. Wilt TJ, Brawer MK, Jones KM, Barry MJ, Aronson WJ, Fox S, et al. Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med. 2012;367(3):203–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline M. Moore MD, FRCS (Urol) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag France

About this chapter

Cite this chapter

Ridout, A.J., Emberton, M., Moore, C.M. (2015). Focal Photodynamic Therapy. In: Barret, E., Durand, M. (eds) Technical Aspects of Focal Therapy in Localized Prostate Cancer. Springer, Paris. https://doi.org/10.1007/978-2-8178-0484-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0484-2_14

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0483-5

  • Online ISBN: 978-2-8178-0484-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics