ECIRS: Access Creation

  • Cesare Marco ScoffoneEmail author
  • András Hoznek
  • Cecilia Maria Cracco


A suitable percutaneous access is the key point of the success of any PNL, maximizing the effectiveness of the procedure in terms of stone-free status and minimizing the risk of complications. The selection of the best calyx of entry should be preoperatively planned, to define the better strategy for a definite patient with a given urolithiasis. The first operative step of ECIRS (preliminary flexible ureteroscopy) has a fundamental diagnostic importance for defining stone and collecting system features impossible to define by means of any preoperative investigation. Renal puncture and tract dilation modalities are discussed. Fluoroscopy and ultrasound guidance, and Endovision control of the supine renal puncture are described and other guidance methods considered (retrograde nephrostomy application, all-seeing needle, image-fusion and iPad guidance, electromagnetic tracking system, navigation systems, and telerobotic arms). Guidewire application and management and tract dilation-related problems are afforded, according to the authors’ expertise.


Needle Guide Tract Dilation Flexible Ureteroscopy Staghorn Stone Electromagnetic Tracking System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ritter M, Krombach P, Michel MS (2011) Percutaneous stone removal. Eur Urol Suppl 10:433–439CrossRefGoogle Scholar
  2. 2.
    Miller NL, Matlaga BR, Lingeman JE (2007) Techniques for fluoroscopic percutaneous renal access. J Urol 178:15–23PubMedCrossRefGoogle Scholar
  3. 3.
    De La Rosette J, Assimos D, Desai M et al (2011) The Clinical Research Office of the Endourological Society percutaneous nephrolithotomy global study: indications, complications, and outcomes in 5803 patients. J Endourol 25:11–17PubMedCrossRefGoogle Scholar
  4. 4.
    Spann A, Poteet J, Hyatt D et al (2011) Safe and effective obtainment of access for percutaneous nephrolithotomy by urologists: the Louisiana State University experience. J Endourol 25:1421–1425PubMedCrossRefGoogle Scholar
  5. 5.
    Watterson JD, Soon S, Jana K (2006) Access related complications during percutaneous nephrolithotomy: urology versus radiology at a single academic institution. J Urol 176:142–145PubMedCrossRefGoogle Scholar
  6. 6.
    Tomaszewski JJ, Ortiz TD, Gayed BA et al (2010) Renal access by urologist or radiologist during percutaneous nephrolithotomy. J Endourol 24:1733–1737PubMedCrossRefGoogle Scholar
  7. 7.
    Lang E, Thomas R, Davis R et al (2009) Risks, advantages, and complications of intercostal versus subcostal approach for percutaneous nephrolithotripsy. Urology 74:751–755PubMedCrossRefGoogle Scholar
  8. 8.
    Soria F, Delgado MI, Sanchez FM et al (2009) Effectiveness of three-dimensional fluoroscopy in percutaneous nephrostomy: an animal model study. Urology 73:649–652PubMedCrossRefGoogle Scholar
  9. 9.
    Steinberg PL, Semins MJ, Wason SE et al (2009) Fluoroscopy-guided percutaneous renal access. J Endourol 23:1627–1631PubMedCrossRefGoogle Scholar
  10. 10.
    Hoznek A, Ouzaid I, Gettman M et al (2011) Fluoroscopy-guided renal access in supine percutaneous nephrolithotomy. Urology 78:221–224PubMedCrossRefGoogle Scholar
  11. 11.
    Desai M (2009) Ultrasonography-guided punctures – with and without puncture guide. J Endourol 23:1641–1643PubMedCrossRefGoogle Scholar
  12. 12.
    Basiri A, Mohammadi Sichani M, Hosseini SR et al (2010) X-ray-free percutaneous nephrolithotomy in supine position with ultrasound guidance. World J Urol 28:239–244PubMedCrossRefGoogle Scholar
  13. 13.
    Hopper KD, Sherman JL, Luethke JM et al (1987) The retrorenal colon in the supine and prone patient. Radiology 162:443–446PubMedGoogle Scholar
  14. 14.
    Tuttle DN, Yeh BM, Meng MV et al (2005) Risk of injury to adjacent organs with lower-pole fluoroscopically guided percutaneous nephrostomy: evaluation with prone, supine, and multiplanar reformatted CT. J Vasc Interv Radiol 16:1489–1492PubMedCrossRefGoogle Scholar
  15. 15.
    Brancaforte A, Serantoni S, Silva Barbosa F et al (2011) Renal volume assessment with 3D ultrasound. Radiol Med 116:1095–1104PubMedCrossRefGoogle Scholar
  16. 16.
    Tranquart F, Mercier L, Frinking P et al (2012) Perfusion quantification in contrast-enhanced ultrasound (CEUS) – ready for research projects and routine clinical use. Ultraschall Med 33(Suppl 1):S31–S38PubMedGoogle Scholar
  17. 17.
    Khan F, Borin JF, Pearle MS et al (2006) Endoscopically guided percutaneous renal access: seeing is believing. J Endourol 20:451–455PubMedCrossRefGoogle Scholar
  18. 18.
    Scoffone CM, Cracco CM, Cossu M et al (2008) Endoscopic combined intrarenal surgery in Galdakao-modified supine Valdivia position: a new standard for percutaneous nephrolithotomy? Eur Urol 54:1393–1403PubMedCrossRefGoogle Scholar
  19. 19.
    Bader MJ, Gratzke C, Seitz M et al (2011) The “all-seeing needle”: initial results of an optical puncture system confirming access in percutaneous nephrolithotomy. Eur Urol 59:1054–1059PubMedCrossRefGoogle Scholar
  20. 20.
    Kawahara T, Ito H, Terao H et al (2012) Ureteroscopy assisted retrograde nephrostomy: a new technique for percutaneous nephrolithotomy. BJU Int 110:588–590PubMedCrossRefGoogle Scholar
  21. 21.
    Wynberg JB, Borin JF, Vicena JZ et al (2012) Flexible-ureteroscopy-directed retrograde nephrostomy for percutaneous nephrolithotomy: description of a technique. J Endourol 26:1268–1274PubMedCrossRefGoogle Scholar
  22. 22.
    Kawahara T, Ito H, Terao H et al (2012) Effectiveness of ureteroscopy-assisted retrograde nephrostomy (UARN) for percutaneous nephrolithotomy (PCNL). PLoS ONE 7:e52149. doi: 10.1371/journal.pone.0052149 PubMedCrossRefGoogle Scholar
  23. 23.
    Kalogeropoulou C, Kallidonis P, Liatsikos EN (2009) Imaging in percutaneous nephrolithotomy. J Endourol 23:1571–1577PubMedCrossRefGoogle Scholar
  24. 24.
    Chen ML, Shukla G, Jackman SV et al (2011) Real-time tomographic reflection in facilitating percutaneous access to the renal collecting system. J Endourol 25:743–745PubMedCrossRefGoogle Scholar
  25. 25.
    Ritter M, Rassweiler MC, Haecker A, Michel MS (2013) Laser-guided percutaneous kidney access with the UroDyna-CT: first experience of three-dimensional puncture planning with an ex-vivo model. World J Urol 31:1147–1151Google Scholar
  26. 26.
    Appelbaum L, Solbiati L, Sosna J et al (2013) Evaluation of an electromagnetic image-fusion navigation system for biopsy of small lesions: assessment of accuracy in an in vivo swine model. Acad Radiol 20:209–217PubMedCrossRefGoogle Scholar
  27. 27.
    Mueller M, Rassweiler MC, Klein J et al (2013) Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radio Surg 8:663–675Google Scholar
  28. 28.
    De Lima REA, Oliveira C, Rodrigues P et al (2013) Percutaneous renal collecting system access using a novel electromagnetic tracking: first experience in vivo pig model. Eur Urol Suppl 12:e968CrossRefGoogle Scholar
  29. 29.
    Lazarus J, Willams J (2011) The Locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture – a preliminary report. J Endourol 25:747–750PubMedCrossRefGoogle Scholar
  30. 30.
    Challacombe B, Patriciu A, Glass J et al (2005) A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithototomy. Comput Aided Surg 10:165–171PubMedGoogle Scholar
  31. 31.
    Bruyère F, Ayoub J, Arbeille P (2011) Use of a telerobotic arm to perform ultrasound guidance during renal biopsy in transplant recipients: a preliminary study. J Endourol 25:231–234PubMedCrossRefGoogle Scholar
  32. 32.
    Landman J, Venkatesh R, Ragab M et al (2002) Comparison of intrarenal pressure and irrigant flow during percutaneous nephroscopy with an indwelling ureteral catheter, ureteral occlusion balloon, and ureteral access sheath. Urology 60:584–587PubMedCrossRefGoogle Scholar
  33. 33.
    Landman J, Venkatesh R, Lee DL et al (2003) Combined percutaneous and retrograde approach to staghorn calculi with application of the ureteral access sheath to facilitate percutaneous nephrolithotomy. J Urol 169:64–67PubMedCrossRefGoogle Scholar
  34. 34.
    Marguet CG, Springhart WP, Tan YH et al (2005) Simultaneous combined use of flexible ureteroscopy and percutaneous nephrolithotomy to reduce the number of access tracts in the management of complex renal calculi. BJU Int 96:1097–1100PubMedCrossRefGoogle Scholar
  35. 35.
    Williams SK, Leveillee RJ (2008) Management of staghorn calculus: single puncture with judicious use of the flexible nephroscope. Curr Opin Urol 18:224–228PubMedCrossRefGoogle Scholar
  36. 36.
    Akman T, Binbay M, Sari E et al (2011) Factors affecting bleeding during percutaneous nephrolithotomy: single surgeon experience. J Endourol 25:327–333PubMedCrossRefGoogle Scholar
  37. 37.
    Alken P (1981) Telescopbougierset zur perkutanen Nephrostomie. Aktuel Urol 12:216–219CrossRefGoogle Scholar
  38. 38.
    Clayman RV, Castaneda-Zuniga WR, Hunter DW et al (1983) Rapid balloon dilatation of the nephrostomy track for nephrostolithotomy. Radiology 147:884–885PubMedGoogle Scholar
  39. 39.
    Frattini A, Barbieri A, Salsi P et al (2001) One shot: a novel method to dilate the nephrostomy access for percutaneous nephrolithotripsy. J Endourol 15:919–923PubMedCrossRefGoogle Scholar
  40. 40.
    Rusnak B, Castaneda-Zuniga W, Kotula F et al (1982) An improved dilator system for percutaneous nephrostomies. Radiology 144:174PubMedGoogle Scholar
  41. 41.
    Gonen M, Istanbulluoglu OM, Cicek T et al (2008) Balloon dilatation versus Amplatz dilatation for nephrostomy tract dilatation. J Endourol 22:901–904PubMedCrossRefGoogle Scholar
  42. 42.
    Yamaghuci A, Skolarikos A, Buchholz NPN et al (2011) Operating times and bleeding complications in percutaneous nephrolithotomy: a comparison of tract dilation methods in 5537 patients in the Clinical Research Office of the Endourological Society percutaneous nephrolithotomy global study. J Endourol 25:933–939CrossRefGoogle Scholar
  43. 43.
    Aminsharifi A, Alavi M, Sadeghi G et al (2011) Renal parenchymal damage after percutaneous nephrolithotomy with one-stage tract dilation technique: a randomized clinical trial. J Endourol 25:927–931PubMedCrossRefGoogle Scholar
  44. 44.
    Handa RK, Evan AP, Willis LR et al (2009) Renal functional effects of multiple-tract percutaneous access. J Endourol 23:1951–1956PubMedCrossRefGoogle Scholar
  45. 45.
    Chan DY, Jarrett TW (2000) Mini-percutaneous nephrolithotomy. J Endourol 14:269–273PubMedCrossRefGoogle Scholar
  46. 46.
    Lahme S, Bichler KH, Strohmaier WL, Gotz T (2001) Minimally invasive PCNL in patients with renal pelvic and calyceal stones. Eur Urol 40:619–624Google Scholar
  47. 47.
    Giusti G, Piccinelli A, Taverna G et al (2007) Miniperc? No, thank you! Eur Urol 51:810–814PubMedCrossRefGoogle Scholar
  48. 48.
    Abdelhafez MF, Amend B, Bedke J et al (2013) Minimally invasive percutaneous nephrolithotomy: a comparative study of the management of small and large renal stones. Urology 81:241–245PubMedCrossRefGoogle Scholar
  49. 49.
    Clayman RV (2000) Nephroscopy sheath characteristics and intrarenal pressure: human kidney model. J Urol 163:1616PubMedGoogle Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • Cesare Marco Scoffone
    • 1
    Email author
  • András Hoznek
    • 2
  • Cecilia Maria Cracco
    • 1
  1. 1.Department of UrologyCottolengo HospitalTorinoItaly
  2. 2.Department of UrologyCHU Henri MondorCréteil CedexFrance

Personalised recommendations