Advertisement

Et demain?

  • Marc Lévêque

En résumé

La stimulation cérébrale profonde, grâce à son action réversible, devrait permettre l’exploration d’un nombre croissant de cibles anatomiques et, de ce fait, accroître le nombre de pathologies psychiatriques susceptibles de bénéficier d’un traitement par psychochirurgie. Il est probable que les progrès des nanotechnologies, de la biologie, de l’informatique et des sciences cognitives, la fameuse «convergence NBIC», aboutissent à un véritable changement de paradigme dans la prise en charge de certaines formes de maladies mentales aujourd’hui en impasse thérapeutique. On ne peut exclure, à terme, que cette convergence n’ait plus seulement pour objectif un «homme réparé» mais qu’elle tende aussi vers un «homme augmenté».

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    American Psychiatric Association and American Psychiatric Association. Task Force on DSM-IV (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR, 4th ed. American Psychiatric Association, Washington, DCGoogle Scholar
  2. 2.
    Corcos M (2011) L’homme selon DSM: Le nouvel ordre psychiatrique. Albin Michel, ParisGoogle Scholar
  3. 3.
    Cosgrove L, Krimsky S (2012) A comparison of DSM-IV and DSM-5 panel members’ financial associations with industry: a pernicious problem persists. PLoS Med 9: e1001190PubMedCrossRefGoogle Scholar
  4. 4.
    Hariri AR, Lewis DA (2006) Genetics and the future of clinical psychiatry. Am J Psychiatry 163: 1676–8PubMedCrossRefGoogle Scholar
  5. 5.
    Mayberg HS (2009) Targeted electrode-based modulation of neural circuits for depression. J Clin Invest 119: 717–25PubMedCrossRefGoogle Scholar
  6. 6.
    Pepper J, Hariz M. 2012. Anterior capsulotomy versus dbs for obsessive compulsive disorder: a review of the literature, XXth Congress of the European Society for Stereotactic and Functional Neurosurgery, Cascais, Portugal.Google Scholar
  7. 7.
    Martin E, Jeanmonod D, Morel A, et al. (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66: 858–61PubMedCrossRefGoogle Scholar
  8. 8.
    Lozano A (2012) Functional neurosurgery — an illustrious past, an exciting future, XXth Congress of the European Society for Stereotactic and Functional Neurosurgery, Cascais, Portugal.Google Scholar
  9. 9.
    Medel R, Monteith SJ, Elias WJ, et al. (2012) Magnetic resonance-guided focused ultrasound surgery: part 2: a review of current and future applications. Neurosurgery 71: 755–63PubMedCrossRefGoogle Scholar
  10. 10.
    Nuttin B, Cosyns P, Demeulemeester H, et al. (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354: 1526PubMedCrossRefGoogle Scholar
  11. 11.
    Mallet L, Mesnage V, Houeto JL, et al. (2002) Compulsions, Parkinson’s disease, and stimulation. Lancet 360: 1302–4PubMedCrossRefGoogle Scholar
  12. 12.
    Fontaine D, Mattei V, Borg M, et al. (2004) Effect of subthalamic nucleus stimulation on obsessive-compulsive disorder in a patient with Parkinson disease. Case report. J Neurosurg 100: 1084–6PubMedCrossRefGoogle Scholar
  13. 13.
    Mallet L, Polosan M, Jaafari N, et al. (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359: 2121–34PubMedCrossRefGoogle Scholar
  14. 14.
    Baumeister AA (2006) Serendipity and the cerebral localization of pleasure. J Hist Neurosci 15: 92–8PubMedCrossRefGoogle Scholar
  15. 15.
    Benabid AL, Torres N (2012) New targets for DBS. Parkinsonism Relat Disord 18Suppl 1: S21–3PubMedCrossRefGoogle Scholar
  16. 16.
    Benabid AL (2006) Attention, la psychochirurgie est de retour. Revue de neurologie 162: 797–9CrossRefGoogle Scholar
  17. 17.
    Drevets WC, Price JL, Simpson JR Jr, et al. (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–7PubMedCrossRefGoogle Scholar
  18. 18.
    Mayberg HS, Lozano AM, Voon V, et al. (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45: 651–60PubMedCrossRefGoogle Scholar
  19. 19.
    Abosch A, Yacoub E, Ugurbil K, et al. (2010) An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 teslas. Neurosurgery 67: 1745–56; discussion: 56PubMedCrossRefGoogle Scholar
  20. 20.
    Metzger CD, Eckert U, Steiner J, et al. (2010) High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei. Front Neuroanat 4: 138PubMedCrossRefGoogle Scholar
  21. 21.
    Lenglet C, Abosch A, Yacoub E, et al. (2012) Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One 7: e29153PubMedCrossRefGoogle Scholar
  22. 22.
    Halmi KA, Tozzi F, Thornton LM, et al. (2005) The relation among perfectionism, obsessive-compulsive personality disorder and obsessive-compulsive disorder in individuals with eating disorders. Int J Eat Disord 38: 371–4PubMedCrossRefGoogle Scholar
  23. 23.
    Milanfranchi A, Marazziti D, Planner C, et al. (1995) Comorbidity in obsessive-compulsive disorder: focus on depression. Eur Psychiatry 10: 379–82PubMedCrossRefGoogle Scholar
  24. 24.
    Thimann J, Gauthier JW (1959) The management of depression in alcoholism and drug addiction. J Clin Exp Psychopathol Q Rev Psychiatry Neurol 20: 320–5PubMedGoogle Scholar
  25. 25.
    Elder JB, Hoh DJ, Oh BC, et al. (2008) The future of cerebral surgery: a kaleidoscope of opportunities. Neurosurgery 62: 1555–79; discussion 79-82PubMedGoogle Scholar
  26. 26.
    Elder JB, Liu CY, Apuzzo ML (2008) Neurosurgery in the realm of 10(−9), Part 2: applications of nanotechnology to neurosurgery—present and future. Neurosurgery 62: 269–84; discussion: 84-5PubMedCrossRefGoogle Scholar
  27. 27.
    Li J, Andrews RJ (2007) Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays. Acta Neurochir Suppl 97: 537–45PubMedCrossRefGoogle Scholar
  28. 28.
    Mazzatenta A, Giugliano M, Campidelli S, et al. (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27: 6931–6PubMedCrossRefGoogle Scholar
  29. 29.
    Kopp N (2007) Neuroéthique et nanotechnologies. In: Hervé C, ed. La nanomédecine: Enjeux éthiques, juridiques et normatifs. Dalloz, ParisGoogle Scholar
  30. 30.
    Llina R, Walton K. Nakao M, et al. (2005) Neuro-vascular central nervous recording/stimulating system: Using nanotechnology probes. Journal of Nanoparticle Research: 111–27Google Scholar
  31. 31.
    Andrews RJ (2010) Neuromodulation: advances in the next decade. Ann N Y Acad Sci 1199: 212–20PubMedCrossRefGoogle Scholar
  32. 32.
    Roco MC, Bainbridge WS (2003) Converging Technologies for Improving Human Performance: Nanotechnology, Biotechnology, Information Technology and Cognitive Science. Kluwer Academic PublishersGoogle Scholar
  33. 33.
    Venton BJ, Zhang H, Garris PA, et al. (2003) Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 87: 1284–95PubMedCrossRefGoogle Scholar
  34. 34.
    Robinson DL, Venton BJ, Heien ML, et al. (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49: 1763–73PubMedCrossRefGoogle Scholar
  35. 35.
    Gradinaru V, Thompson KR, Zhang F, et al. (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27: 14231–8PubMedCrossRefGoogle Scholar
  36. 36.
    Han MH, Friedman AK (2012) Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 62: 89–100PubMedCrossRefGoogle Scholar
  37. 37.
    Lobo MK, Nestler EJ, Covington HE 3rd (2012) Potential utility of optogenetics in the study of depression. Biol Psychiatry 71: 1068–74PubMedCrossRefGoogle Scholar
  38. 38.
    Vernier P (2011) L’impact et les enjeux des nouvelles technologies d’exploration et de thérapie du cerveau (Rapport). In Rapports d’office parlementaire (ed.), Sénat, République FrançaiseGoogle Scholar
  39. 39.
    Heller AC, Amar AP, Liu CY, et al. (2006) Surgery of the mind and mood: a mosaic of issues in time and evolution. Neurosurgery 59: 720–33; discussion 33-9PubMedCrossRefGoogle Scholar
  40. 40.
    Robison RA, Taghva A, Liu CY, et al. (2012) Surgery of the mind, mood, and conscious state: an idea in evolution. World Neurosurg: Oct 6Google Scholar
  41. 41.
    Deisseroth K (2012) Optogenetics and psychiatry: applications, challenges, and opportunities. Biol Psychiatry 71: 1030–2PubMedCrossRefGoogle Scholar
  42. 42.
    Minet P (2012) L’optogénétique gagne tous les organes. La rechercheGoogle Scholar
  43. 43.
    Hamani C, Mcandrews MP, Cohn M, et al. (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 63: 119–23PubMedCrossRefGoogle Scholar
  44. 44.
    Suthana N, Haneef Z, Stern J, et al. (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366: 502–10PubMedCrossRefGoogle Scholar
  45. 45.
    Han JH, Kushner SA, Yiu AP, et al. (2009) Selective erasure of a fear memory. Science 323: 1492–6PubMedCrossRefGoogle Scholar
  46. 46.
    Gross D (2010) Traditional vs. Modern neuroenhancement: notes from a medicoethical and societal perspective. In: Fangerau H, Fegert J, Trapp T, ed. Implanted minds: the neuroethics of intracerebral stem cell transplantation and deep brain stimulation. Transcript Verlag, London.Google Scholar
  47. 47.
    Laxton AW, Tang-Wai DF, Mcandrews MP, et al. (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68: 521–34PubMedCrossRefGoogle Scholar
  48. 48.
    Neuner I, Podoll K, Janouschek H, et al. (2009) From psychosurgery to neuromodulation: deep brain stimulation for intractable Tourette syndrome. World J Biol Psychiatry 10: 366–76PubMedCrossRefGoogle Scholar
  49. 49.
    Nguyen-Vu TD, Chen H, Cassell AM, et al. (2006) Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2: 89–94PubMedCrossRefGoogle Scholar
  50. 50.
    Green JE, Choi JW, Boukai A, et al. (2007) A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre. Nature 445: 414–7PubMedCrossRefGoogle Scholar
  51. 51.
    He W, Bellamkonda RV (2005) Nanoscale neuro-integrative coatings for neural implants. Biomaterials 26: 2983–90PubMedCrossRefGoogle Scholar
  52. 52.
    He W, Mcconnell GC, Bellamkonda RV (2006) Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays. J Neural Eng 3: 316–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Paris 2013

Authors and Affiliations

  • Marc Lévêque
    • 1
  1. 1.Service de neurochirurgie Hôpital universitaire de la Pitié-Salpêtrière Assistance publiqueHôpitaux de ParisParisFrance

Personalised recommendations