Advertisement

La neuroanatomie des émotions

  • Marc Lévêque

En résumé

Le système limbique, commun à de nombreux mammifères, désigne un ensemble de structures anatomiques mises en jeu lors des émotions. Théorisé au siècle dernier, par Papez puis Mac Lean, ce système comprend le cortex préfrontal — où les émotions accèdent à la conscience — ainsi que l’hippocampe, l’amygdale et l’hypothalamus. L’hypothalamus, et son prolongement l’hypophyse, provoque les manifestations viscérales liées à ces émotions. Ces manifestations émotionnelles peuvent être déclenchées par la conscience mais inversement, la lecture de l’état corporel, grâce notamment à l’insula, peut les rendre conscientes. La régulation de ces réponses émotionnelles s’effectue aussi par des structures sous- corticales: les noyaux gris centraux. Ces noyaux — composés par le thalamus, le striatum, le pallidum ainsi que par les noyaux sous- thalamiques et accumbens — sont liés au cortex par des circuits en boucles, boucles qui possèdent un rôle d’interface entre les différentes composantes — émotionnelles, cognitives et motrices — de nos comportements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Hippocrate, Jouanna J(2003) La maladie sacrée. Texte établi et trad. par Jacques Jouanna. Les Belles lettres, ParisGoogle Scholar
  2. 2.
    Freud S, Frossard J, Classiques LA (2010) Au-delà du principe de plaisir. Texte intégral. Alexis Brun productions, [Caen]Google Scholar
  3. 3.
    Cabanis PJG (1823) Oeuvres complètes de Cabanis. Bossange Frères, ParisGoogle Scholar
  4. 4.
    Broca P (1878) Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique. Rev Anthropol: 385–498Google Scholar
  5. 5.
    Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725–43Google Scholar
  6. 6.
    MacLean P (1949) Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med 11: 338–53PubMedGoogle Scholar
  7. 7.
    Kotter R, Stephan KE (1997) Useless or helpful? The «limbic system» concept. Rev Neurosci 8: 139–45PubMedGoogle Scholar
  8. 8.
    Burruss JW, Hurley RA, Taber KH, et al. (2000) Functional neuroanatomy of the frontal lobe circuits. Radiology 214: 227–30PubMedGoogle Scholar
  9. 9.
    Pirot S (2003) L’anatomie fonctionnelle du cortex préfrontal: du singe à l’homme. Encephale 20: 27–31Google Scholar
  10. 10.
    Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30: 319–33PubMedGoogle Scholar
  11. 11.
    Bergson H (1911) L’énergie spirituelle. Ed. Alcan, ParisGoogle Scholar
  12. 12.
    Rauch SL, Dougherty DD, Malone D, et al. (2006) A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J Neurosurg 104: 558–65PubMedGoogle Scholar
  13. 13.
    Drevets WC (1998) Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 49: 341–61PubMedGoogle Scholar
  14. 14.
    Baxter LR Jr, Schwartz JM, Phelps ME, et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–50PubMedGoogle Scholar
  15. 15.
    Mottaghy FM, Keller CE, Gangitano M, et al. (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115: 1–14PubMedGoogle Scholar
  16. 16.
    Kito S, Fujita K, Koga Y (2008) Changes in regional cerebral blood flow after repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in treatment-resistant depression. J Neuropsychiatry Clin Neurosci 20: 74–80PubMedGoogle Scholar
  17. 17.
    Richieri R, Adida M, Dumas R, et al. (2010) [Affective disorders and repetitive transcranial magnetic stimulation: Therapeutic innovations]. Encephale 36Suppl 6: S197–201PubMedGoogle Scholar
  18. 18.
    Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10: 295–307PubMedGoogle Scholar
  19. 19.
    Ollat HP (2004) Cortex orbitofrontal, comportement et émotions. Encéphale 25: 25–33Google Scholar
  20. 20.
    Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55: 11–29PubMedGoogle Scholar
  21. 21.
    Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–8PubMedGoogle Scholar
  22. 22.
    Aouizerate BMG, Cuny C, Guehl E, et al. (2005) Stimulation cérébrale profonde du striatum ventral dans le traitement du trouble obsessionnel-compulsif avec dépression majeure. Médecine et Sciences 21: 811–3Google Scholar
  23. 23.
    Damasio H, Damasio AR (1989) Lesion analysis in neuropsychology. Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Machlin SR, Harris GJ, Pearlson GD, et al. (1991) Elevated medial-frontal cerebral blood flow in obsessive-compulsive patients: a SPECT study. Am J Psychiatry 148: 1240–2PubMedGoogle Scholar
  25. 25.
    Rauch SL, Jenike MA, Alpert NM, et al. (1994) Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxygen 15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatry 51: 62–70PubMedGoogle Scholar
  26. 26.
    Baxter LR Jr (1994) Positron emission tomography studies of cerebral glucose metabolism in obsessive compulsive disorder. J Clin Psychiatry 55 Suppl: 54–9PubMedGoogle Scholar
  27. 27.
    Swedo SE, Pietrini P, Leonard HL, et al. (1992) Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 49: 690–4PubMedGoogle Scholar
  28. 28.
    Trivedi MH (1996) Functional neuroanatomy of obsessive-compulsive disorder. J Clin Psychiatry 57Suppl 8: 26–35; discussion 6PubMedGoogle Scholar
  29. 29.
    Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science 307: 1118–21PubMedGoogle Scholar
  30. 30.
    Damasio AR, Blanc M (1995) L’erreur de Descartes, la raison des émotions. Traduit de l’anglais par Marcel Blanc. O. Jacob, ParisGoogle Scholar
  31. 31.
    Mayberg HS, Liotti M, Brannan SK, et al. (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156: 675–82PubMedGoogle Scholar
  32. 32.
    Dougherty DD, Weiss AP, Cosgrove GR, et al. (2003) Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 99: 1010–7PubMedGoogle Scholar
  33. 33.
    Kluver C (1937) Psychic ‘blindness’ and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am J Physiol: 352–3Google Scholar
  34. 34.
    Clarac F, Ternaux JP, Buser P (2008) Encyclopédie historique des neurosciences du neurone à l’émergence de la pensée. Avant-propos de Dominique Wolton. Préface de Pierre Buser. De Boeck, Bruxelles [Paris]Google Scholar
  35. 35.
    Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49: 381–91PubMedGoogle Scholar
  36. 36.
    Gil R, Lamoglia E (2010) Neuropsychologie. Elsevier Health Sciences, FranceGoogle Scholar
  37. 37.
    Martin JH (2003) Neuroanatomy: Text and Atlas. McGraw-HillGoogle Scholar
  38. 38.
    Kunst-Wilson WR, Zajonc RB (1980) Affective discrimination of stimuli that cannot be recognized. Science 207: 557–8PubMedGoogle Scholar
  39. 39.
    Cannon WB (1931) Again the James-Lange and the thalamic theories of emotion. Psychological Review 38: 281–95Google Scholar
  40. 40.
    Adolphs R, Tranel D, Damasio H, et al. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372: 669–72PubMedGoogle Scholar
  41. 4L.
    Ledoux JE (1999) The emotional brain: the mysterious underpinnings of emotional life. Phoenix, LondonGoogle Scholar
  42. 42.
    Siever LJ (2008) Neurobiology of aggression and violence. Am J Psychiatry 165: 429–42PubMedGoogle Scholar
  43. 43.
    Narabayashi H, Uno M (1966) Long range results of stereotaxic amygdalotomy for behavior disorders. Confin Neurol 27: 168–71PubMedGoogle Scholar
  44. 44.
    Narabayashi H, Nagao T, Saito Y, et al. (1963) Stereotaxic amygdalotomy for behavior disorders. Arch Neurol 9: 1–16PubMedGoogle Scholar
  45. 45.
    Balasubramaniam V, Ramamurthi B (1970) Stereotaxic amygdalotomy in behavior disorders. Confin Neurol 32: 367–73PubMedGoogle Scholar
  46. 46.
    Hitchcock E, Cairns V (1973) Amygdalotomy. Postgrad Med J 49: 894–904PubMedGoogle Scholar
  47. 47.
    Small IF, Heimburger RF, Small JG, et al. (1977) Follow-up of stereotaxic amygdalotomy for seizure and behavior disorders. Biol Psychiatry 12: 401–11PubMedGoogle Scholar
  48. 48.
    Mempel E, Witkiewicz B, Stadnicki R, et al. (1980) The effect of medial amygdalotomy and anterior hippocampotomy on behavior and seizures in epileptic patients. Acta Neurochir Suppl (Wien) 30: 161–7Google Scholar
  49. 49.
    Jacobson R (1986) Disorders of facial recognition, social behaviour and affect after combined bilateral amygdalotomy and subcaudate tractotomy—a clinical and experimental study. Psychol Med 16: 439–50PubMedGoogle Scholar
  50. 50.
    Ramamurthi B (1988) Stereotactic operation in behaviour disorders. Amygdalotomy and hypothalamotomy. Acta Neurochir Suppl (Wien) 44: 152–7Google Scholar
  51. 51.
    Fountas KN, Smith JR (2007) Historical evolution of stereotactic amygdalotomy for the management of severe aggression. J Neurosurg 106: 710–3PubMedGoogle Scholar
  52. 52.
    Anderson AK, Phelps EA (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411: 305–9PubMedGoogle Scholar
  53. 53.
    Franzini A, Ferroli P, Leone M, et al. (2003) Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52: 1095–9; discussion 9-101PubMedGoogle Scholar
  54. 54.
    Cahill L, Babinsky R, Markowitsch HJ, et al. (1995) The amygdala and emotional memory. Nature 377: 295–6PubMedGoogle Scholar
  55. 55.
    Ambroggi F, Ishikawa A, Fields HL, et al. (2008) Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59: 648–61PubMedGoogle Scholar
  56. 56.
    Frenois F, Stinus L, Di Blasi F, et al. (2005) A specific limbic circuit underlies opiate withdrawal memories. J Neurosci 25: 1366–74PubMedGoogle Scholar
  57. 57.
    Hafting T, Fyhn M, Molden S, et al. (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801–6PubMedGoogle Scholar
  58. 58.
    Bear MF, Connors BW, Paradiso MA, et al. (2007) Neurosciences à la découverte du cerveau traduction et adaptation françaises, André Nieoullon, 3e éd. Pradel, Rueil-MalmaisonGoogle Scholar
  59. 59.
    Vincent JD (2012) Le cerveau sur mesure. Odile Jacob, ParisGoogle Scholar
  60. 60.
    Bontempi B, Laurent-Demir C, Destrade C, et al. (1999) Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature 400: 671–5PubMedGoogle Scholar
  61. 61.
    Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around london: activation of the right hippocampus in taxi drivers. J Neurosci 17: 7103–10PubMedGoogle Scholar
  62. 62.
    Suthana N, Haneef Z, Stern J, et al. (2012) Memory enhancement and deep-brain stimulation of the entorhinal area. N Engl J Med 366: 502–10PubMedGoogle Scholar
  63. 63.
    Hamani C, Mcandrews MP, Cohn M, et al. (2008) Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann Neurol 63: 119–23PubMedGoogle Scholar
  64. 64.
    Laxton AW, Tang-Wai DF, McAndrews MP,et al. (2010) A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease. Ann Neurol 68: 521–34PubMedGoogle Scholar
  65. 65.
    Damasio AR, Fidel JL (2010) L’autre moi-même les nouvelles cartes du cerveau, de la conscience et des émotions. Traduit de l’anglais (États-Unis) par Jean-Luc Fidel. Odile Jacob, ParisGoogle Scholar
  66. 66.
    Ansermet F, Magistretti P (2004) À chacun son cerveau plasticité neuronale et inconscient. Odile Jacob, ParisGoogle Scholar
  67. 67.
    Hohmann GW (1966) Some effects of spinal cord lesions on experienced emotional feelings. Psychophysiology 3: 143–56PubMedGoogle Scholar
  68. 68.
    Beatty J (1995) Principles Behavioral Neuroscience. McGraw-Hill CollegeGoogle Scholar
  69. 69.
    Nicotra A, Critchley HD, Mathias CJ, et al. (2006) Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain 129: 718–28PubMedGoogle Scholar
  70. 70.
    Heller AC, Amar AP, Liu CY, et al. (2006) Surgery of the mind and mood: a mosaic of issues in time and evolution. Neurosurgery 59: 720–33; discussion 33-9PubMedGoogle Scholar
  71. 71.
    Torres N, Chabardes S, Benabid AL (2011) Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv Tech Stand Neurosurg 36: 17–30PubMedGoogle Scholar
  72. 72.
    Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77: 323–4PubMedGoogle Scholar
  73. 73.
    Goldney RD (1978) Craniopharyngioma simulating anorexia nervosa. J Nerv Ment Dis 166: 135-8PubMedGoogle Scholar
  74. 74.
    Heron GB, Johnston DA (1976) Hypothalamic tumor presenting as anorexia nervosa. Am J Psychiatry 133: 580–2PubMedGoogle Scholar
  75. 75.
    Weller RA, Weller EB (1982) Anorexia nervosa in a patient with an infiltrating tumor of the hypothalamus. Am J Psychiatry 139: 824–5PubMedGoogle Scholar
  76. 76.
    Anand BK, Dua S, Shoenberg K (1955) Hypothalamic control of food intake in cats and monkeys. J Physiol 127: 143–52PubMedGoogle Scholar
  77. 77.
    Quaade F (1974) Letter: Stereotaxy for obesity. Lancet 1: 267PubMedGoogle Scholar
  78. 78.
    Maschke M, Tuite PJ, Pickett K, et al. (2005) The effect of subthalamic nucleus stimulation on kinaesthesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 76: 569–71PubMedGoogle Scholar
  79. 79.
    Tuite PJ, Maxwell RE, Ikramuddin S, et al. (2005) Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord 11: 247–52PubMedGoogle Scholar
  80. 80.
    Novakova L, Ruzicka E, Jech R, et al. (2007) Increase in body weight is a non-motor side effect of deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neuro Endocrinol Lett 28: 21–5PubMedGoogle Scholar
  81. 81.
    Tomycz ND, Whiting DM, Oh MY (2012) Deep brain stimulation for obesity—from theoretical foundations to designing the first human pilot study. Neurosurg Rev 35: 37–42; discussion: 3PubMedGoogle Scholar
  82. 82.
    Sano K, Mayanagi Y, Sekino H, et al. (1970) Results of timulation and destruction of the posterior hypothalamus in man. J Neurosurg 33: 689–707PubMedGoogle Scholar
  83. 83.
    Sano K, Mayanagi Y (1988) Posteromedial hypothalamotomy in the treatment of violent, aggressive behaviour. Acta Neurochir Suppl (Wien) 44: 145–51Google Scholar
  84. 84.
    Bejjani BP, Houeto JL, Hariz M, et al. (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59: 1425–7PubMedGoogle Scholar
  85. 85.
    May A, Bahra A, Buchel C, et al. (1998) Hypothalamic activation in cluster headache attacks. Lancet 352: 275–8PubMedGoogle Scholar
  86. 86.
    Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N Engl J Med 345: 1428–9PubMedGoogle Scholar
  87. 87.
    Woon FL, Sood S, Hedges DW (2010) Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 34: 1181–8PubMedGoogle Scholar
  88. 88.
    Brown ES, Rush AJ, Mcewen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21: 474–84PubMedGoogle Scholar
  89. 89.
    Starkman MN, Gebarski SS, Berent S, et al. (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32: 756–65PubMedGoogle Scholar
  90. 90.
    Kosfeld M, Heinrichs M, Zak PJ, et al. (2005) Oxytocin increases trust in humans. Nature 435: 673–6PubMedGoogle Scholar
  91. 91.
    Andari E, Duhamel JR, Zalla T, et al. (2010) Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc Natl Acad Sci USA 107: 4389–94PubMedGoogle Scholar
  92. 92.
    Feifel D, Macdonald K, Nguyen A, et al. (2010) Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol Psychiatry 68: 678–80PubMedGoogle Scholar
  93. 93.
    Geisler S, Trimble M (2008) The lateral habenula: no longer neglected. CNS Spectr 13: 484–9PubMedGoogle Scholar
  94. 94.
    Hikosaka O, Sesack SR, Lecourtier L, et al. (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28: 11825–9PubMedGoogle Scholar
  95. 95.
    Sartorius A, Kiening KL, Kirsch P, et al. (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67: e9–e11PubMedGoogle Scholar
  96. 96.
    Meng H, Wang Y, Huang M, et al. (2011) Chronic deep brain stimulation of the lateral habenula nucleus in a rat model of depression. Brain Res 1422: 32–8PubMedGoogle Scholar
  97. 97.
    Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–27PubMedGoogle Scholar
  98. 98.
    Heath RB (1954) Studies in Schyzophrenia: a multidisciplinary approach to mind-brain relationship. Harvard University Press, CambridgeGoogle Scholar
  99. 99.
    Pool JL (1954) Psychosurgery in older people. J Am Geriatr Soc 2: 456–66PubMedGoogle Scholar
  100. 100.
    Burchiel K (2002) Surgical management of pain. ThiemeGoogle Scholar
  101. 101.
    Schvarcz JR (1993) Long-term results of stimulation of the septal area for relief of neurogenic pain. Acta Neurochir Suppl (Wien) 58: 154–5Google Scholar
  102. 102.
    Schvarcz JR (1985) Chronic stimulation of the septal area for the relief of intractable pain. Appl Neurophysiol 48: 191–4PubMedGoogle Scholar
  103. 103.
    Heath RG (1963) Electrical self-stimulation of the brain in man. Am J Psychiatry 120: 571–7PubMedGoogle Scholar
  104. 104.
    Oshima H, Katayama Y (2010) Neuroethics of deep brain stimulation for mental disorders: brain stimulation reward in humans. Neurol Med Chir (Tokyo) 50: 845–52Google Scholar
  105. 105.
    Heath R (1960) Evaluation of seven years’ experience with depth electrode studies in human patients. In: Hoeber PB, ed. Electrical studies on the unanesthetized human brain. O’Doherty DS, editors, New YorkGoogle Scholar
  106. 106.
    Gol A (1967) Relief of pain by electrical stimulation of the septal area. J Neurol Sci 5: 115–20PubMedGoogle Scholar
  107. 107.
    Moan CH, Heath R (1972) Septal stimulation for the initiation of heterosexual behavior in a homosexual male. Experimental Psychiatry 3: 23–6Google Scholar
  108. 108.
    Hodaie M, Wennberg RA, Dostrovsky JO, et al. (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43: 603–8PubMedGoogle Scholar
  109. 109.
    Polio C, Villemure JG (2007) Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy. Acta Neurochir Suppl 97: 311–20Google Scholar
  110. 110.
    Chabardes S, Minotti L, Chassagnon S, et al. (2008) [Basal ganglia deep-brain stimulation for treatment of drug-resistant epilepsy: review and current data]. Neurochirurgie 54: 436–40PubMedGoogle Scholar
  111. 111.
    Alexander GE, Delong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–81PubMedGoogle Scholar
  112. 112.
    Hendelman W (2006) Atlas Of functional neuroanatomy. Taylor & Francis GroupGoogle Scholar
  113. 113.
    Llinas RR, Ribary U, Jeanmonod D, et al. (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96: 15222–7PubMedGoogle Scholar
  114. 114.
    Yelnik J (2002) Functional anatomy of the basal ganglia. Mov Disord 17Suppl 3: S15–21PubMedGoogle Scholar
  115. 115.
    Kumar R, Lozano AM, Kim YJ, et al. (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51: 850–5PubMedGoogle Scholar
  116. 116.
    Pillon B, Ardouin C, Damier P, et al. (2000) Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 55: 411–8PubMedGoogle Scholar
  117. 117.
    Alegret M, Junque C, Valldeoriola F, et al. (2001) Effects of bilateral subthalamic stimulation on cognitive function in Parkinson disease. Arch Neurol 58: 1223–7PubMedGoogle Scholar
  118. 118.
    Brusa L, Pierantozzi M, Peppe A, et al. (2001) Deep brain stimulation (DBS) attentional effects parallel those of 1-dopa treatment. J Neural Transm 108: 1021–7PubMedGoogle Scholar
  119. 119.
    Dujardin K, Defebvre L, Krystkowiak P, et al. (2001) Influence of chronic bilateral stimulation of the subthalamic nucleus on cognitive function in Parkinson’s disease. J Neurol 248: 603–11PubMedGoogle Scholar
  120. 120.
    Moretti R, Torre P, Antonello RM, et al. (2001) Effects on cognitive abilities following subthalamic nucleus stimulation in Parkinson’s disease. Eur J Neurol 8: 726–7PubMedGoogle Scholar
  121. 121.
    Moretti R, Torre P, Antonello RM, et al. (2002) Cognitive changes following subthalamic nucleus stimulation in two patients with Parkinson disease. Percept Mot Skills 95: 477–86PubMedGoogle Scholar
  122. 122.
    Valldeoriola F, Pilleri M, Tolosa E, et al. (2002) Bilateral subthalamic stimulation monotherapy in advanced Parkinson’s disease: long-term follow-up of patients. Mov Disord 17: 125–32PubMedGoogle Scholar
  123. 123.
    Daniele A, Albanese A, Contarino MF, et al. (2003) Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74: 175–82PubMedGoogle Scholar
  124. 124.
    Gironeil A, Kulisevsky J, Rami L, et al. (2003) Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J Neurol 250: 917–23Google Scholar
  125. 125.
    Saint-Cyr JA, Trepanier LL, Kumar R, et cd. (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123 (Pt 10): 2091–108PubMedGoogle Scholar
  126. 126.
    Trepanier LL, Kumar R, Lozano AM, et al. (2000) Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn 42: 324–47PubMedGoogle Scholar
  127. 127.
    Kleiner-Fisman G, Fisman DN, Sime E, et al. (2003) Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg 99: 489–95PubMedGoogle Scholar
  128. 128.
    Hershey T, Revilla FJ, Wernle A, et al. (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62: 1110–4PubMedGoogle Scholar
  129. 129.
    Moretti R, Torre P, Antonello RM, et al. (2003) Neuropsychological changes after subthalamic nucleus stimulation: a 12 month follow-up in nine patients with Parkinson’s disease. Parkinsonism Relat Disord 10: 73–9PubMedGoogle Scholar
  130. 130.
    Temel Y, Visser-Vandewalle V, Aendekerk B, et al. (2005) Acute and separate modulation of motor and cognitive performance in parkinsonian rats by bilateral stimulation of the subthalamic nucleus. Exp Neurol 193: 43–52PubMedGoogle Scholar
  131. 131.
    Krack P, Kumar R, Ardouin C, et al. (2001) Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16: 867–75PubMedGoogle Scholar
  132. 132.
    Kulisevsky J, Berthier ML, Gironeil A, et al. (2002) Mania following deep brain stimulation for Parkinson’s disease. Neurology 59: 1421–4PubMedGoogle Scholar
  133. 133.
    Romito LM, Raja M, Daniele A, et al. (2002) Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17: 1371–4PubMedGoogle Scholar
  134. 134.
    Rodriguez MC, Guridi OJ, Alvarez L, et al. (1998) The subthalamic nucleus and tremor in Parkinson’s disease. Mov Disord 13Suppl 3: 111–8PubMedGoogle Scholar
  135. 135.
    Kumar R, Lozano AM, Sime E, et al. (1999) Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 53: 561–6PubMedGoogle Scholar
  136. 136.
    Moro E, Scerrati M, Romito LM, et al. (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53: 85–90PubMedGoogle Scholar
  137. 137.
    Molinuevo JL, Valldeoriola F, Tolosa E, et al. (2000) Levodopa withdrawal after bilateral subthalamic nucleus stimulation in advanced Parkinson disease. Arch Neurol 57: 983–8PubMedGoogle Scholar
  138. 138.
    Berney A, Vingerhoets F, Perrin A, et al. (2002) Effect on mood of subthalamic DBS for Parkinson’s disease: a consecutive series of 24 patients. Neurology 59: 1427–9PubMedGoogle Scholar
  139. 139.
    Brown RG (2002) Behavioural disorders, Parkinson’s disease, and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 689PubMedGoogle Scholar
  140. 140.
    Doshi PK, Chhaya N, Bhatt MH (2002) Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord 17: 1084–5PubMedGoogle Scholar
  141. 141.
    Houeto JL, Mesnage V, Mallet L, et al. (2002) Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 701–7PubMedGoogle Scholar
  142. 142.
    Martinez-Martin P, Valldeoriola F, Tolosa E,etal. (2002) Bilateral subthalamic nucleus stimulation and quality of life in advanced Parkinson’s disease. Mov Disord 17: 372–7PubMedGoogle Scholar
  143. 143.
    Ostergaard K, Sunde N, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17: 693–700PubMedGoogle Scholar
  144. 144.
    Thobois S, Mertens P, Guenot M, et al. (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249: 529–34PubMedGoogle Scholar
  145. 145.
    Iranzo A, Valldeoriola F, Santamaria J, et al. (2002) Sleep symptoms and polysomnographic architecture in advanced Parkinson’s disease after chronic bilateral subthalamic stimulation. J Neurol Neurosurg Psychiatry 72: 661–4PubMedGoogle Scholar
  146. 146.
    Vingerhoets FJ, Villemure JG, Temperli P, et al. (2002) Subthalamic DBS replaces levodopa in Parkinson’s disease: two-year follow-up. Neurology 58: 396–401PubMedGoogle Scholar
  147. 147.
    Volkmann J, Allert N, Voges J, et al. (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56: 548–51PubMedGoogle Scholar
  148. 148.
    Krack P, Batir A, Van Blercom N, et al. (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349: 1925–34PubMedGoogle Scholar
  149. 149.
    Krause M, Fogel W, Heck A, et al. (2001) Deep brain stimulation for the treatment of Parkinson’s disease: subthalamic nucleus versus globus pallidus internus. J Neurol Neurosurg Psychiatry 70: 464–70PubMedGoogle Scholar
  150. 150.
    Burn DJ, Troster AI (2004) Neuropsychiatric complications of medical and surgical therapies for Parkinson’s disease. J Geriatr Psychiatry Neurol 17: 172–80PubMedGoogle Scholar
  151. 151.
    Witjas T, Baunez C, Henry JM, et al. (2005) Addiction in Parkinson’s disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 20: 1052–5PubMedGoogle Scholar
  152. 152.
    Temel Y, Kessels A, Tan S, et al. (2006) Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disord 12: 265–72PubMedGoogle Scholar
  153. 153.
    Nowinski WL, Belov D, Pollak P, et al. (2005) Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 57: 319–30; discussion: 30PubMedGoogle Scholar
  154. 154.
    Aouizerate B, Martin-Guehl C, Cuny E, et al. (2005) [Deep brain stimulation of the ventral striatum in the treatment of obsessive-compulsive disorder and major depression]. Med Sci (Paris) 21: 811–3Google Scholar
  155. 155.
    Jog MS, Kubota Y, Connolly CI, et al. (1999) Building neural representations of habits. Science 286: 1745–9PubMedGoogle Scholar
  156. 156.
    Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14: 69–97PubMedGoogle Scholar
  157. 157.
    Sturm V, Lenartz D, Koulousakis A, et al. (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive-and anxiety-disorders. J Chem Neuroanat 26: 293–9PubMedGoogle Scholar
  158. 158.
    Heinze HJH, Voges M, Hinrichs J, et al. (2009) Counteracting incentive sensitization in severe alcohol dependence using deep brain stimulation of the nucleus accumbens: clinical and basic science aspects. Frontiers in Human Neuroscience 3Google Scholar
  159. 159.
    Huff W, Lenartz D, Schormann M, et al. (2010) Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: Outcomes after one year. Clin Neurol Neurosurg 112: 137–43PubMedGoogle Scholar
  160. 160.
    Van Kuyck K, Gabriels L, Cosyns P, et al. (2007) Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. Acta Neurochir Suppl 97: 375–91PubMedGoogle Scholar
  161. 161.
    Lopes Da Silva FH, Arnolds DE, Neijt HC (1984) A functional link between the limbic cortex and ventral striatum: physiology of the subiculum accumbens pathway. Exp Brain Res 55: 205–14PubMedGoogle Scholar
  162. 162.
    Defrance JF, Marchand JF, Sikes RW, et al. (1985) Characterization of fimbria input to nucleus accumbens. J Neurophysiol 54: 1553–67PubMedGoogle Scholar
  163. 163.
    Yang CR, Mogenson GJ (1984) Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res 324: 69–84PubMedGoogle Scholar
  164. 164.
    Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299: 187–228PubMedGoogle Scholar
  165. 165.
    Brog JS, Salyapongse A, Deutch AY, et al. (1993) The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338: 255–78PubMedGoogle Scholar
  166. 166.
    Montaron MF, Deniau JM, Menetrey A, et al. (1996) Prefrontal cortex inputs of the nucleus accumbens-nigro-thalamic circuit. Neuroscience 71: 371–82PubMedGoogle Scholar
  167. 167.
    De Koning PP, Van Den Munckhof P, Figee M, et al. (2012). Deep bain stimulation in obsessive-compulsive disorder targeted at the nucleus accumbens. In: Denys D, Feenstra M, Schuurman R, ed. Deep Brain Stimulation: a new frontier in psychiatry. Springer VerlagGoogle Scholar
  168. 168.
    Yang CR, Mogenson GJ (1989) Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 489: 237–46PubMedGoogle Scholar
  169. 169.
    Churchill L, Kalivas PW (1994) A topographically organized gamma-aminobutyric acid projection from the ventral pallidum to the nucleus accumbens in the rat. J Comp Neurol 345: 579–95PubMedGoogle Scholar
  170. 170.
    Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570: 92–101PubMedGoogle Scholar
  171. 171.
    Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180: 545–80PubMedGoogle Scholar
  172. 172.
    Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16: 275–96PubMedGoogle Scholar
  173. 173.
    Heimer L, Zahm DS, Churchill L, et al. (1991) Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41: 89–125PubMedGoogle Scholar
  174. 174.
    Mogenson GJ, Takigawa M, Robertson A, et al. (1979) Self-stimulation of the nucleus accumbens and ventral tegmental area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Res 171: 247–59PubMedGoogle Scholar
  175. 175.
    Prado-Alcala R, Wise RA (1984) Brain stimulation reward and dopamine terminal fields. I. Caudate-putamen, nucleus accumbens and amygdala. Brain Res 297: 265–73PubMedGoogle Scholar
  176. 176.
    Rolls ET, Burton MJ, Mora F (1980) Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Res 194: 339–57PubMedGoogle Scholar
  177. 177.
    Zacharko RM, Kasian M, Irwin J, et al. (1990) Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain. Behav Brain Res 36: 251–81PubMedGoogle Scholar
  178. 178.
    Van Ree JM, Otte AP (1980) Effects of (Des-Tyrl)-gamma-endorphin and alpha-endorphin as compared to haloperidol and amphetamine on nucleus accumbens self-stimulation. Neuropharmacology 19: 429–34PubMedGoogle Scholar
  179. 179.
    West TE, Wise RA (1988) Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate-frequency functions. Brain Res 462: 126–33PubMedGoogle Scholar
  180. 180.
    Costentin J (2006) Halte au cannabis. Odile Jacob, ParisGoogle Scholar
  181. 181.
    Pontieri FE, Tanda G, Di Chiara G (1995) Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Natl Acad Sci USA 92: 12304–8PubMedGoogle Scholar
  182. 182.
    Di Chiara G, Tanda G, Bassareo V, et al. (1999) Drug addiction as a disorder of associative learning. Role of nucleus accumbens shell/extended amygdala dopamine. Ann N Y Acad Sci 877: 461–85PubMedGoogle Scholar
  183. 183.
    Costa VD, Lang PJ, Sabatinelli D, et al. (2010) Emotional imagery: assessing pleasure and arousal in the brain’s reward circuitry. Hum Brain Mapp 31: 1446–57PubMedGoogle Scholar
  184. 184.
    Sabatinelli D, Bradley MM, Lang PJ, et al. (2007) Pleasure rather than salience activates human nucleus accumbens and medial prefrontal cortex. J Neurophysiol 98: 1374–9PubMedGoogle Scholar
  185. 185.
    Schlaepfer TE, Cohen MX, Frick C, et al. (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33: 368–77PubMedGoogle Scholar
  186. 186.
    Bewernick BH, Hurlemann R, Matusch A, et al. (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67: 110–6PubMedGoogle Scholar
  187. 187.
    Abosch A, Cosgrove GR (2008) Biological basis for the surgical treatment of depression. Neurosurg Focus 25: E2PubMedGoogle Scholar
  188. 188.
    Irle E, Exner C, Thielen K, et al. (1998) Obsessive-compulsive disorder and ventromedial frontal lesions: clinical and neuropsychological findings. Am J Psychiatry 155: 255–63PubMedGoogle Scholar
  189. 189.
    Feil J, Zangen A (2010) Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev 34: 559–74PubMedGoogle Scholar
  190. 190.
    Carter A, Hall W (2011) Proposals to trial deep brain stimulation to treat addiction are premature. Addiction 106: 235–7PubMedGoogle Scholar
  191. 191.
    Hall W, Carter A (2011) Is deep brain stimulation a prospective “cure” for addiction? F1000 Med Rep 3: 4PubMedGoogle Scholar
  192. 192.
    Kuhn J, Moller M, Muller U, et al. (2011) Deep brain stimulation for the treatment of addiction. Addiction 106: 1536–7PubMedGoogle Scholar
  193. 193.
    Luigjes J, Van Den Brink W, Feenstra M, et al. (2011) Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17: 572–83PubMedGoogle Scholar
  194. 194.
    Li N, Wang J, Wang XL, et al. (2012) Nucleus Accumbens Surgery for Addiction. World Neurosurg: Oct 6Google Scholar
  195. 195.
    Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the central nervous system. Am J Physiol 84: 490–513Google Scholar
  196. 196.
    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20: 11–21PubMedGoogle Scholar
  197. 197.
    Dalgleish T (2004) The emotional brain. Nat Rev Neurosci 5: 583–9PubMedGoogle Scholar
  198. 198.
    Kanba S (2004) [Brain science in emotional memory: role of the hippocampus]. Fukuoka Igaku Zasshi 95: 281–5PubMedGoogle Scholar
  199. 199.
    Lestienne R (2009) La bonne influence de nos émotions. La rechercheGoogle Scholar
  200. 200.
    Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46: 703–13PubMedGoogle Scholar
  201. 201.
    Mcgaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27: 1–28PubMedGoogle Scholar
  202. 202.
    Bremner JD (2006) Traumatic stress: effects on the brain. Dialogues Clin Neurosci 8: 445–61PubMedGoogle Scholar
  203. 203.
    Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92: 1–9PubMedGoogle Scholar
  204. 204.
    Jeannerod M (2002) Le cerveau intime. Odile Jacob, ParisGoogle Scholar
  205. 205.
    Darwin C (1872) The expression of the emotions in man and animals. J. Murray, LondonGoogle Scholar
  206. 206.
    MacLean PD, Kral VA (1973) A triune concept of the brain and behaviour. Published for the Ontario Mental Health Foundation by University of Toronto PressGoogle Scholar
  207. 207.
    MacLean P (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system Electroencephalogr Clin Neurophysiol 4: 407–18PubMedGoogle Scholar
  208. 208.
    Jouvent R (2009) Le cerveau magicien de la réalité au plaisir psychique. Odile Jacob, ParisGoogle Scholar
  209. 209.
    Kopell BH, Greenberg BD (2008) Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci Biobehav Rev 32: 408–22PubMedGoogle Scholar
  210. 210.
    Krack P, Hariz MI, Baunez C, et al. (2010) Deep brain stimulation: from neurology to psychiatry? Trends Neurosci 33: 474–84PubMedGoogle Scholar
  211. 211.
    Haber SN, Fudge JL, Mcfarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369–82PubMedGoogle Scholar
  212. 212.
    Levesque J, Eugene F, Joanette Y, et al. (2003) Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry 53: 502–10PubMedGoogle Scholar
  213. 213.
    Alexander GE, Crutcher MD, Delong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85: 119–46PubMedGoogle Scholar
  214. 214.
    Bunney WE, Bunney BG (2000) Evidence for a compromised dorsolateral prefrontal cortical parallel circuit in schizophrenia. Brain Res Brain Res Rev 31: 138–46PubMedGoogle Scholar
  215. 215.
    Daffner KR, Mesulam MM, Holcomb PJ, et al. (2000) Disruption of attention to novel events after frontal lobe injury in humans. J Neurol Neurosurg Psychiatry 68: 18–24PubMedGoogle Scholar
  216. 216.
    Mega MS, Cummings JL (1994) Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 6: 358–70PubMedGoogle Scholar
  217. 217.
    Duffy JD, Campbell JJ 3rd (1994) The regional prefrontal syndromes: a theoretical and clinical overview. J Neuropsychiatry Clin Neurosci 6: 379–87PubMedGoogle Scholar
  218. 218.
    Damasio H, Damasio AR (1989) Lesion analysis in neuropsychology. Oxford University Press, New YorkGoogle Scholar
  219. 219.
    Magill PJ, Bolam JP, Bevan MD (2000) Relationship of activity in the subthalamic nucleus-globus pallidus network to cortical electroencephalogram. J Neurosci 20: 820–33PubMedGoogle Scholar
  220. 220.
    Beurrier CG, Bioulac B (2002) Subthalamic nucleus: a clock inside basal ganglia?. Thalamus & Related Systems 2: 1–8Google Scholar
  221. 221.
    Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304: 1926–9PubMedGoogle Scholar
  222. 222.
    Coenen VA, Schlaepfer TE, Maedler B, et al. (2011) Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35: 1971–81PubMedGoogle Scholar
  223. 223.
    Bonnet-Brilhault FT, Petit F (2001) Données biologiques de la schizophrénie, Encycl Méd Chir, vol. 37Google Scholar

Copyright information

© Springer-Verlag Paris 2013

Authors and Affiliations

  • Marc Lévêque
    • 1
  1. 1.Service de neurochirurgie Hôpital universitaire de la Pitié-Salpêtrière Assistance publiqueHôpitaux de ParisParisFrance

Personalised recommendations