Skip to main content

Objectifs pharmacocinétiques, pharmacodynamiques (PK/PD) et adaptation posologique des antibiotiques chez le patient de réanimation : vers une approche pratique

  • Chapter
Book cover Infectiologie en réanimation

Part of the book series: Références en réanimation. Collection de la SRLF ((SRLF))

  • 1012 Accesses

Résumé

Tous les antibiotiques ne tuent pas de la même manière les bactéries et il est classique de distinguer, en fonction de leur mode de bactéricidie, deux grandes familles de produits:

  • ceux dont l’effet bactéricide est fortement majoré par l’augmentation des concentrations réalisées: ils sont dits «concentration - dépendants»;

  • et ceux dont l’effet maximal est atteint pour des concentrations à peine supérieures aux concentrations minimales inhibitrices (CMI) (en général, 2 à 4 fois la CMI). L’effet de ces derniers ne dépendant plus alors que du temps de contact réalisé, il est d’usage de les désigner sous le terme générique d’antibiotiques «temps - dépendants» ou « concentration - indépendants ».

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155: 93–9

    Article  PubMed  CAS  Google Scholar 

  2. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr. (1999) Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 43: 623–9

    PubMed  CAS  Google Scholar 

  3. Beaucaire G, Minozzi C, Tod M et al. (1997) Clinical efficacy of IV once daily dosing isepamicin used during 5 or 10 days, with or without initial loading dose in ICU ventilated patients with nosocomial pneumonia. 37th annual ICAAC, Toronto, Ontario, 28 septembre–1er octobre, p 371

    Google Scholar 

  4. Zelenitsky SA, Harding GK, Sun S et al. (2003) Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 52: 668–74

    Article  PubMed  CAS  Google Scholar 

  5. Petitjean O, Jehl F, Tod M (2000) Pénétration tissulaire des antibiotiques. In: Martin C, Gouin F (eds) Infection et antibiothérapie en réanimation, aux urgences et en chirurgie. Arnette, Rueil-Malmaison, 2ème édition, p 1029

    Google Scholar 

  6. Beaucaire G, Leroy O, Beuscart C et al. (1991) Clinical and bacteriological efficacy, and practical aspects of amikacin given once daily for severe infections. J Antimicrob Chemother 27Suppl C: 91–103

    Article  PubMed  Google Scholar 

  7. Marik PE, Havlik I, Monteagudo FS, Lipman J (1991) The pharmacokinetic of amikacin in critically ill adult and paediatric patients: comparison of once-versus twice-daily dosing regimens. J Antimicrob Chemother 27Suppl C: 81–9

    Article  PubMed  Google Scholar 

  8. Taccone FS, Laterre PF, Spapen H et al. (2010) Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 2010; 14: R53

    Article  PubMed  Google Scholar 

  9. Nicolau DP, Freeman CD, Belliveau P et al. (1995) Experience with a once-daily aminogly-coside program administered to 2,184 adult patients. Antimicrob Agents Chemother 39: 650–5

    Article  PubMed  CAS  Google Scholar 

  10. Rea RS, Capitano B, Bies R et al. (2008) Suboptimal aminoglycoside dosing in critically ill patients. Ther Drug Monit 30: 674–81

    Article  PubMed  CAS  Google Scholar 

  11. Prins JM, Büller HR, Kuijper EJ et al. (1993) Once versus thrice daily gentamicin in patients with serious infections. Lancet 341: 335–9

    Article  PubMed  CAS  Google Scholar 

  12. ter Braak EW, de Vries PJ, Bouter KP et al. (1990) Once-daily dosing regimen for amino-glycoside plus beta-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med. 89: 58–66

    Article  PubMed  Google Scholar 

  13. I.A.T.C.G. — E.O.R.T.C. (1993) Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. Ann Intern Med. 119: 584–93

    Article  Google Scholar 

  14. Rybak MJ, Abate BJ, Kang SL et al. (1999) Prospective evaluation of the effect of an amino-glycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43: 1549–55

    PubMed  CAS  Google Scholar 

  15. Drusano GL, Ambrose PG, Bhavnani SM et al. (2007) Back to the future: using amino-glycosides again and how to dose them optimally. Clin Infect Dis 45: 753–60

    Article  PubMed  CAS  Google Scholar 

  16. Rougier F, Ducher M, Maurin M et al. (2003) Aminoglycoside dosages and nephrotoxicity: quantitative relationships. Clin Pharmacokinet 42: 493–500

    Article  PubMed  CAS  Google Scholar 

  17. 17. AFSSAPS — Mise au point sur le bon usage des aminosides par voie injectable: gentamicine, tobramycine, netilmicine, amikacine et isépamicine, mars 2011

    Google Scholar 

  18. Gâlvez R, Luengo C, Cornejo R et al. (2011) Higher than recommended amikacin loading doses achieve pharmacokinetic targets without associated toxicity. Int J Antimicrob Agents. 38: 146–51

    Article  PubMed  CAS  Google Scholar 

  19. Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care. 21: 172–3

    PubMed  CAS  Google Scholar 

  20. Delattre IK, Musuamba FT, Nyberg J et al. (2010) Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther Drug Monit 32: 749–56

    Article  PubMed  CAS  Google Scholar 

  21. Taccone FS, de Backer D, Laterre PF et al. (2011) Pharmacokinetics of a loading dose of amikacin in septic patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents. 37: 531–5

    Article  PubMed  CAS  Google Scholar 

  22. Joukhadar C, Frossard M, Mayer BX et al. (2001) Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 29: 385–91

    Article  PubMed  CAS  Google Scholar 

  23. Mutz NJ, Seyr M, Waibel U (1993) Lung vascular permeability changes and fluid shifts in traumatized patients. In: Vincent JL (ed) Year book of intensive care and emergency medicine. Springer-Verlag, Berlin, p 619

    Google Scholar 

  24. Layeux B, Taccone FS, Fagnoul D et al. (2010) Amikacin monotherapy for sepsis caused by panresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 54:4939–41

    Article  PubMed  CAS  Google Scholar 

  25. Traynor AM, Nafziger AN, Bertino JS Jr (1995) Aminoglycoside dosing weight correction factors for patients of various body sizes. Antimicrob Agents Chemother 39: 545–8

    Article  PubMed  CAS  Google Scholar 

  26. Pai MP, Nafziger AN, Bertino JS Jr (2011) Simplified estimation of aminoglycoside pharmacokinetics in underweight and obese adult patients. Antimicrob Agents Chemother 55: 4006–11

    Article  PubMed  CAS  Google Scholar 

  27. Janmahasatian S, Duffull SB, Ash S et al. (2005) Quantification of lean bodyweight. Clin Pharmacokinet 44: 1051–65

    Article  PubMed  Google Scholar 

  28. Chagnac A, Herman M, Zingerman B et al. (2008) Obesity-induced glomerular hyperfiltra-tion: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant 23: 3946–52

    Article  PubMed  CAS  Google Scholar 

  29. Baptista JP, Udy AA, Sousa E et al. (2011) A comparison of estimates of glomerular filtra-tion in critically ill patients with augmented renal clearance. Crit Care 15: R139

    Article  PubMed  Google Scholar 

  30. Martin JH, Fay MF, Udy A et al. (2011) Pitfalls of using estimations of glomerular filtration rate in an intensive care population. Intern Med J 41: 537–43

    Article  PubMed  CAS  Google Scholar 

  31. Taccone FS, Laterre PF, Dugernier T et al. (2010) Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care 14: R126

    Article  PubMed  Google Scholar 

  32. Toschlog EA, Blount KP, Rotondo MF et al. (2003) Clinical predictors of subtherapeutic aminoglycoside levels in trauma patients undergoing once-daily dosing. J Trauma. 55:255–60

    Article  PubMed  Google Scholar 

  33. Udy AA, Roberts JA, Boots RJ et al. (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49: 1–16

    Article  PubMed  CAS  Google Scholar 

  34. Minville V, Asehnoune K, Ruiz S et al. (2011) Increased creatinine clearance in polytrauma patients with normal serum creatinine: a retrospective observational study. Crit Care 15: R49

    Article  PubMed  Google Scholar 

  35. Hoste EA, Damen J, Vanholder RC et al. (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant. 20:747–53

    Article  PubMed  CAS  Google Scholar 

  36. Conil JM, Georges B, Breden A et al. (2006) Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int J Antimicrob Agents 28: 226–30

    Article  PubMed  CAS  Google Scholar 

  37. Zaske DE (1986) Aminoglycosides. In: Evans WE, Schentag JJ, Jusko WJ (eds) Applied pharmacokinetics: principles of therapeutic drug monitoring. Applied Therapeutics, Inc. Spokane, WA, p 331

    Google Scholar 

  38. Kirkpatrick CMJ, Duffull SB, Begg EJ (1999) Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol 47: 637–643

    Article  PubMed  CAS  Google Scholar 

  39. Cockroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41

    Article  Google Scholar 

  40. Levey AS, Bosch JP, Lewis JB et al. (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 130: 461–70

    Article  PubMed  CAS  Google Scholar 

  41. Levey AS, Stevens LA, Schmid CH et al. (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604–12

    Article  PubMed  Google Scholar 

  42. Ghobadi C, Johnson TN, Aarabi M et al. (2011) Application of a systems approach to the bottom-up assessment of pharmacokinetics in obese patients: expected variations in clearance. Clin Pharmacokinet. 50: 809–22

    Article  PubMed  CAS  Google Scholar 

  43. Kees MG, Hilpert JW, Gnewuch C et al. (2010) Clearance of vancomycin during continuous infusion in Intensive Care Unit patients: correlation with measured and estimated creatinine clearance and serum cystatin C. Int J Antimicrob Agents. 36: 545–8

    Article  PubMed  CAS  Google Scholar 

  44. Pong S, Seto W, Abdolell M et al. (2005) 12-hour versus 24-hour creatinine clearance in critically ill pédiatric patients. Pediatr Res. 58: 83–8

    Article  PubMed  Google Scholar 

  45. Han PY, Duffull SB, Kirkpatrick CM, Green B (2007) Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 82: 505–8

    Article  PubMed  CAS  Google Scholar 

  46. Demirovic JA, Pai AB, Pai MP (2009) Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm. 66: 642–8

    Article  PubMed  CAS  Google Scholar 

  47. Jesudason DR, Clifton P (2011) Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician. Int J Obes (Lond) 242: 1–7

    Google Scholar 

  48. Baumann TJ, Staddon JE, Horst HM, Bivins BA (1987) Minimum urine collection periods for accurate determination of creatinine clearance in critically ill patients. Clin Pharm. 6: 393–8

    PubMed  CAS  Google Scholar 

  49. Markantonis SL, Agathokleous-Kioupaki E (1998) Can two-, four-or eight-hour urine collections after voluntary voiding be used instead of twenty-four-hour collections for the esti-mation of creatinine clearance in healthy subjects ? Pharm World Sci 20: 258–63

    Article  PubMed  CAS  Google Scholar 

  50. Wells M, Lipman J (1997) Measurements of glomerular filtration in the intensive care unit are only a rough guide to renal function. S Afr J Surg 35: 20–3

    PubMed  CAS  Google Scholar 

  51. Forrest A, Nix DE, Ballow CH et al. (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37: 1073–81

    Article  PubMed  CAS  Google Scholar 

  52. Thomas JK, Forrest A, Bhavnani SM et al. (1998) Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother. 42: 521–7

    PubMed  CAS  Google Scholar 

  53. Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65:1725–32

    Article  PubMed  CAS  Google Scholar 

  54. Roberts JA, Kruger P, Paterson DL, Lipman J (2008) Antibiotic resistance—what’s dosing got to do with it ? Crit Care Med. 36: 2433–40

    Article  PubMed  CAS  Google Scholar 

  55. Benko R, Matuz M, Doro P (2007) Pharmacokinetics and pharmacodynamics of levoflo-xacin in critically ill patients with ventilator-associated pneumonia. Int J Antimicrob Agents. 30: 162–8

    Article  PubMed  CAS  Google Scholar 

  56. Conil JM, Georges B, de Lussy A et al. (2008) Ciprofloxacin use in critically ill patients: pharmacokinetic and pharmacodynamic approaches. Int J Antimicrob Agents 32: 505–10

    Article  PubMed  CAS  Google Scholar 

  57. Mimoz O, Binter V, Jacolot A et al. (1998) Pharmacokinetics and absolute bioavailability of ciprofloxacin administered through a nasogastric tube with continuous enterai feeding to criti-cally ill patients. Intensive Care Med. 24: 1047–51

    Article  PubMed  CAS  Google Scholar 

  58. van Zanten AR, Polderman KH, van Geijlswijk IM et al. (2008) Ciprofloxacin pharmaco-kinetics in critically ill patients: a prospective cohort study. J Crit Care. 23: 422–30

    Article  PubMed  CAS  Google Scholar 

  59. Gous A, Lipman J, Scribante J et al. (2005) Fluid shifts have no influence on ciprofloxacin pharmacokinetics in intensive care patients with intra-abdominal sepsis. Int J Antimicrob Agents. 26: 50–5

    Article  PubMed  CAS  Google Scholar 

  60. Lipman J, Scribante J, Gous AG et al. (1998) Pharmacokinetic profiles of high-dose intra-venous ciprofloxacin in severe sepsis. Antimicrob Agents Chemother 42: 2235–9

    PubMed  CAS  Google Scholar 

  61. Ambrose PG, Grasela DM, Grasela TH et al. (2001) Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infec-tions. Antimicrob Agents Chemother 45: 2793–7

    Article  PubMed  CAS  Google Scholar 

  62. Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2: 289–300

    Article  PubMed  CAS  Google Scholar 

  63. Zinner SH, Lubenko IY, Gilbert D et al. (2003) Emergence of resistant Streptococcus pneu-moniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and out-side the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother 52: 616–22

    Article  PubMed  CAS  Google Scholar 

  64. Berezhkovskiy LM (2011) On the accuracy of estimation of basic pharmacokinetic para-meters by the traditional noncompartmental equations and the prediction of the steady-state volume of distribution in obese patients based upon data derived from normal subjects. J Pharm Sci 100: 2482–97

    Article  PubMed  CAS  Google Scholar 

  65. Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 49: 71–87

    Article  PubMed  CAS  Google Scholar 

  66. Cook AM, Martin C, Adams VR, Morehead RS (2011) Pharmacokinetics of intravenous levofloxacin administered at 750 milligrams in obese adults. Antimicrob Agents Chemother 55: 3240–3

    Article  PubMed  CAS  Google Scholar 

  67. Kullar R, Leonard SN, Davis SL et al. (2011) Validation of the effectiveness of a vanco-mycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy. 31: 441–8

    Article  PubMed  CAS  Google Scholar 

  68. Rybak M, Lomaestro B, Rotschafer JC et al. (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66: 82–98

    Article  PubMed  CAS  Google Scholar 

  69. Tsuji BT, Rybak MJ, Lau KL, Sakoulas G (2007) Evaluation of accessory gene regulator (agr) group and function in the proclivity towards vancomycin intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51: 1089–91

    Article  PubMed  CAS  Google Scholar 

  70. Liu C, Bayer A, Cosgrove SE et al. (2011) Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52: e18–55

    Article  PubMed  Google Scholar 

  71. Aubron C, Corallo CE, Nunn MO et al. (2011) Evaluation of the accuracy of a pharmacokinetic dosing program in predicting serum vancomycin concentrations in critically ill patients. Ann Pharmacother. 45: 1193–8

    Article  PubMed  CAS  Google Scholar 

  72. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ (2004) Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet 43: 925–42

    Article  PubMed  CAS  Google Scholar 

  73. Kitzis MD, Goldstein FW (2006) Monitoring of vancomycin serum levels for the treatment of staphylococcal infections. Clin Microbiol Infect 12: 92–5

    Article  PubMed  CAS  Google Scholar 

  74. Charles P, Ward P, Johnson P et al. (2004) Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 38:448–51

    Article  PubMed  Google Scholar 

  75. Hageman JC, Liedtke LA, Sunenshine RH et al. (2006) Management of persistent bacte-remia caused by methicillin-resistant Staphylococcus aureus: a survey of infectious diseases consultants. Clin Infect Dis 43: e42–5

    Article  PubMed  Google Scholar 

  76. Craig WA, Lee D, Kethireddy S et al. (2008) Comparison of in vitro and in vivo activity of vancomycin against MRSA at 105 and 107 inocula. 48th annual ICAAC and 46th IDSA annual meeting, Washington DC, 25–28 octobre, abstract A-986, p 23

    Google Scholar 

  77. Craig WA, Andes DR (2006) In vivo pharmacodynamics of vancomycin against VISA, heteroresistant VISA and VSSA in the neutropenic murine thigh-infection model. 46th annual ICAAC, San Francisco, California, 27–30 septembre, abstract A-644, p 16

    Google Scholar 

  78. Lodise TP, Graves J, Evans A et al. (2008) Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother 52: 3315–20

    Article  PubMed  CAS  Google Scholar 

  79. Sakoulas G, Moise-Broder PA, Schentag J et al. (2004) Relationship of MIC and bacteri-cidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42: 2398–402

    Article  PubMed  CAS  Google Scholar 

  80. Hidayat LK, Hsu DI, Quist R et al. (2006) High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 166: 2138–44

    Article  PubMed  Google Scholar 

  81. Chang HJ, Hsu PC, Yang CC et al. (2012) Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant Staphylococcus aureus bacteraemia: a hospital-based retrospective study. J Antimicrob Chemother 67: 736–41

    Article  PubMed  CAS  Google Scholar 

  82. Wysocki M, Delatour F, Faurisson F et al. (2001) Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother. 45: 2460–7

    Article  PubMed  CAS  Google Scholar 

  83. Rello J, Sole-Violan J, Sa-Borges M et al. (2005) Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit Care Med 33: 1983–7

    Article  PubMed  CAS  Google Scholar 

  84. Nunn MO, Corallo CE, Aubron C et al. (2011) Vancomycin dosing: assessment of time to therapeutic concentration and predictive accuracy of pharmacokinetic modeling software. Ann Pharmacother 45: 757–63

    Article  PubMed  CAS  Google Scholar 

  85. Pea F, Furlanut M, Negri C et al. (2009) Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob Agents Chemother 53: 1863–7

    Article  PubMed  CAS  Google Scholar 

  86. Roberts JA, Taccone FS, Udy AA et al. (2011) Vancomycin dosing in critically ill patients: robust methods for improved continuous-infusion regimens. Antimicrob Agents Chemother. 55: 2704–9

    Article  PubMed  CAS  Google Scholar 

  87. Marsot A, Boulamery A, Bruguerolle B, Simon N (2012) Vancomycin: a review of popula-tion pharmacokinetic analyses. Clin Pharmacokinet. 51: 1–13

    Article  PubMed  CAS  Google Scholar 

  88. Welch LP, Leader WG, Chandler MH (1993) Predicting vancomycin pharmacokinetics by using aminoglycoside pharmacokinetics. Clin Pharm. 12: 909–13

    PubMed  CAS  Google Scholar 

  89. del Mar Fernández de Gatta Garcia M, Revilla N, Calvo MV et al. (2007) Pharmacokinetic/ pharmacodynamic analysis of vancomycin in ICU patients. Intensive Care Med. 33: 279–85

    Article  PubMed  CAS  Google Scholar 

  90. Llopis-Salvia P, Jiménez-Torres NV (2006) Population pharmacokinetic parameters of vancomycin in critically ill patients. J Clin Pharm Ther. 31: 447–54

    Article  PubMed  CAS  Google Scholar 

  91. Jeurissen A, Sluyts I, Rutsaert R (2011) A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents 37: 75–7

    Article  PubMed  CAS  Google Scholar 

  92. Commandeur D, Giacardi C, Danguy Des Deserts M et al. (2011) Monitorage de la vanco-mycine: étude rétrospective de 66 patients. Med Mal Infect 41: 410–4

    Article  PubMed  CAS  Google Scholar 

  93. MacGowan AP, Bowker KE (1997) Pharmacodynamics of antimicrobial agents and rationale for their dosing. J Chemother 9: 1090–9

    Google Scholar 

  94. Ingram PR, Lye DC, Tambyah PA et al. (2008) Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother 62: 168–71

    Article  PubMed  CAS  Google Scholar 

  95. Hutschala D, Kinstner C, Skhirdladze K et al. (2009) Influence of vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus intermittent infusion. Anesthesiology 111: 356–65

    Article  PubMed  CAS  Google Scholar 

  96. Pea F, Porreca L, Baraldo M, Furlanut M (2000) High vancomycin dosage regimens requi-red by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 45: 329–35

    Article  PubMed  CAS  Google Scholar 

  97. Bauer LA, Black DJ, Lill JS (1998) Vancomycin dosing in morbidly obese patients. Eur J Clin Pharmacol. 54: 621–5

    Article  PubMed  CAS  Google Scholar 

  98. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26: 1–10

    Article  PubMed  CAS  Google Scholar 

  99. Lodise TP Jr, Lomaestro B, Drusano GL (2007) Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis 44: 357–63

    Article  PubMed  CAS  Google Scholar 

  100. Mouton JW, den Hollander JG (1994) Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrobial Agents Chemother. 38: 931–6

    Article  CAS  Google Scholar 

  101. Manduru M, Mihm LB, White RL (1997) In vitro pharmacodynamics of ceftazidime against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 41: 2053–6

    PubMed  CAS  Google Scholar 

  102. Robaux MA, Dube L, Caillon J et al. (2001) In vivo efficacy of continuous infusion versus intermittent dosing of ceftazidime alone or in combination with amikacin relative to human kine-tic profiles in a Pseudomonas aeruginosa rabbit endocarditis model. J Antimicrob Chemother. 47: 617–22

    Article  PubMed  CAS  Google Scholar 

  103. Roberts JA, Ulldemolins M, Roberts MS et al. (2010) Therapeutic drug monitoring of beta-lactams in critically ill patients: proof of concept. Int J Antimicrob Agents 36: 332–9

    Article  PubMed  CAS  Google Scholar 

  104. Bulitta JB, Kinzig M, Jakob V et al. (2010) Nonlinear pharmacokinetics of piperacillin in healthy volunteers—implications for optimal dosage regimens. Br J Clin Pharmacol 70: 682–93

    Article  PubMed  CAS  Google Scholar 

  105. Georges B, Conil JM, Seguin T et al. (2009) Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother 53: 4483–9

    Article  PubMed  CAS  Google Scholar 

  106. Gómez CM, Cordingly JJ, Palazzo MG (1999) Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother. 43: 1798–802

    PubMed  Google Scholar 

  107. Chapuis TM, Majcherczyk PA. Giannoni E et al. (2010) Prospective monitoring of cefe-pime in intensive care unit adult patients. Crit Care. 14: R51

    Article  PubMed  Google Scholar 

  108. Georges B, Conil JM, Seguin T et al. (2008) Cefepime in intensive care unit patients: validation of a population pharmacokinetic approach and influence of covariables. Int J Clin Pharmacol Ther 46: 157–64

    PubMed  CAS  Google Scholar 

  109. Roberts JA, Kirkpatrick CM, Roberts MS (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous adminis-tration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother. 64: 142–50

    Article  PubMed  CAS  Google Scholar 

  110. McKinnon PS, Paladino JA, Schentag JJ (2008) Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 31: 345–51

    Article  PubMed  CAS  Google Scholar 

  111. Tam VH, McKinnon PS, Akins RL et al. (2002) Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother 50: 425–8

    Article  PubMed  CAS  Google Scholar 

  112. Tam VH, Schilling AN, Neshat S et al. (2005) Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob Agents Chemother 49: 4920–7+

    Article  PubMed  CAS  Google Scholar 

  113. Roberts JA, Kirkpatrick CM, Roberts MS et al. (2010) First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents 35: 156–63

    Article  PubMed  CAS  Google Scholar 

  114. Hites M, Taccone F, Cotton F et al. (2011) Beta-lactam serum levels are inadequate in most critically ill patients. 51st annual ICAAC, Chicago, Illinois, 17–20 octobre, abstract A2–559

    Google Scholar 

  115. Boselli E, Breilh D, Rimmelé T et al. (2008) Alveolar concentrations of piperacillin/ tazo-bactam administered in continuous infusion to patients with ventilator-associated pneumonia. Crit Care Med 36: 1500–6

    Article  PubMed  CAS  Google Scholar 

  116. AubertG, Carricajo A, Coudrot M et al. (2010) Prospective determination of serum cefta-zidime concentrations in intensive care units. Ther Drug Monit 32: 7–9

    Article  CAS  Google Scholar 

  117. Boselli E, Breilh D, Duflo F et al. (2003) Steady-state plasma and intrapulmonary concen-trations of cefepime administered in continuous infusion in critically ill patients with severe nosocomial pneumonia. Crit Care Med 31: 102–6

    Article  CAS  Google Scholar 

  118. Delattre IK, Musuamba FT, Verbeeck RK et al. (2010) Empirical models for dosage optimization of four beta-lactams in critically ill septic patients based on therapeutic drug monitoring of amikacin. Clin Biochem. 43: 589–98

    Article  PubMed  CAS  Google Scholar 

  119. Delattre IK, Musuamba FT, Jacqmin P et al. (2012) Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin Biochem. 2012 Apr 5.

    Google Scholar 

  120. Panomvana D, Kiatjaroensin SA, Phiboonbanakit D (2007) Correlation of the pharma-cokinetic parameters of amikacin and ceftazidime. Clin Pharmacokinet. 46:859–66

    Article  PubMed  CAS  Google Scholar 

  121. Chastre J, Wunderink R, Prokocimer P et al. (2008) Correlation of the pharmacokinetic parameters of amikacin and ceftazidime. Crit Care Med 36: 1089–96

    Article  PubMed  CAS  Google Scholar 

  122. Louie A, Fregeau C, Brown D et al. (2007) Doripenem activity against P. aeruginosa PAO-1 compared to imipenem at different doses and administration modes in hollow fiber infection model. 45th IDSA, San Diego, abstract 436

    Google Scholar 

  123. Hense J (1998) Prospective randomized trial of bolus of meropenem versus infusion meropenem versus ceftazidime/amikacin as empiric initial therapy for infections and fever of unknown origin in neutropenic patients with hématologic malignancies. Ann Hematol 77 (suppl.): S199, abstract 792

    Article  Google Scholar 

  124. Petitjean O, Nicolas P, Jacolot A et al. (2008) Contribution des données PK/PD dans la construction des schémas posologiques du méropénème: analyse critique. Lettre Infectiol 23(suppl. 1): 11–18

    Google Scholar 

  125. Hilliard JJ, Melton J, Hall LR et al. (2008) Efficacy of doripenem against Klebsiella pneu-moniae in an experimental murine pneumonia model. 48th annual ICAAC, Washington DC, 25–28 octobre, abstract A-025, p 6

    Google Scholar 

  126. Yanagihara K, Araki N, Morinaga Y et al. (2008) Efficacy of doripenem in a mouse model of chronic respiratory infection causes by Pseudomonas aeruginosa. 48th annual ICAAC, 25–28 octobre, Washington DC, abstract B-065, p 45

    Google Scholar 

  127. Li RC, Lee SW, Kong CH (1997) Correlation between bactericidal activity and postanti-biotic effect for five antibiotics with different mechanisms of action. J Antimicrob Chemother 40: 39–45

    Article  PubMed  CAS  Google Scholar 

  128. Bowker KE, Holt HA, Reeves DS, MacGowan AP (1996) Bactericidal activity, post antibiotic effect and modified controlled effective regrowth time of meropenem at high concentrations. J Antimicrob Chemother. 38: 1055–60

    Article  PubMed  CAS  Google Scholar 

  129. Dalhoff A, Janjic N, Echols R (2006) Redefining penems. Biochem Pharmacol 71: 1085–1095

    Article  PubMed  CAS  Google Scholar 

  130. Andes D, Craig WA, Bhavnani SM et al. (2003) PK-PD evaluation of doripenem against extended spectrum b-lactamase (ESBL) producing Enterobacteraceae. 41st IDSA, San Diego, California, 9–12 octobre, abstract 182, p 58

    Google Scholar 

  131. Andes D, Craig WA (2008) In vivo paharmacodynamic activity of a novel carbapenem, ME1036, against multiple bacteria in a murine thigh infection model. 48th annual ICAAC, Washington DC, 25–28 octobre, abstract A-032, p 8

    Google Scholar 

  132. Eguchi K, Kanazawa K, Shimizudani T et al. (2007) Experimental verification of the effi-cacy of optimized two-step infusion therapy (OTIT) with meropenem using an in vitro PK-PD model and Monte Carlo simulation. 47th annual ICAAC, Chicago, Illinois, abstract A-777, p 17

    Google Scholar 

  133. Forrest A, Hazra A, Girard D et al. (2008) PK-PD analysis to select IV sulopenem and oral PF-03709270 doses for phases 2 trials. 48th annual ICAAC, Washington DC, 25–28 octobre, abstract A-034, p 9

    Google Scholar 

  134. Garonzik SM, Li J, Thamlikitkul V et al. (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 55: 3284–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Petitjean .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Petitjean, O., Gauzit, R. (2013). Objectifs pharmacocinétiques, pharmacodynamiques (PK/PD) et adaptation posologique des antibiotiques chez le patient de réanimation : vers une approche pratique. In: Infectiologie en réanimation. Références en réanimation. Collection de la SRLF. Springer, Paris. https://doi.org/10.1007/978-2-8178-0389-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0389-0_6

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0388-3

  • Online ISBN: 978-2-8178-0389-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics