Skip to main content

Carpal Biomechanics: Application to Ligamentous Injuries

  • Chapter
  • First Online:
Carpal Ligament Surgery

Abstract

Because the scapholunar ligament is exposed to axial constraints of mobility and loads, it represents a weak point of the proximal row. But it is protected by quite a complete system of extrinsic ligaments which contribute to lock the wrist. There are a palmar ligamentous plane, a dorsal ligamentous plane and a distal scaphoidal ligamentous complex. The different tendons around the wrist can also have a cohesion effect of the carpus. A ligamentous injury is less likely to happen if the scapholunar ligament is unaffected. In that case, the lunotriquetral ligament is most likely injured. Seldom the extrinsic ligaments can be the only one to be affected, astride on the radiocarpal or the mediocarpal spaces. Once all the biomechanical aspects are put together, it is possible to understand the different mechanisms of the carpal collapse, which result from the application of the mechanical loads to the carpus, badly absorbed or badly redirected, by bones badly locked when they should work. The different ligament injuries explain the varieties of carpal instabilities. Consequently, clinical, paraclinical and arthroscopic exams have to explore those different ligamentous bolts for the best. This aims to enable a ligamentous repair as physiological as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Destot E (1905) Lésions du poignet et accidents du travail. Vigot, Paris

    Google Scholar 

  2. Wagner CJ (1956) Perilunar dislocations. J Bone Joint Surg 38 A:1198–1207

    PubMed  Google Scholar 

  3. Linscheid R, Dobyns JH, Beabout JW, Bryan RS (1972) Traumatic instability of the wrist. J Bone Joint Surg 54-A:1612–1632

    Google Scholar 

  4. Meyrueis JP, Cameli M, Pan P (1978) Instabilité du carpe. Diagnostic et formes cliniques. Ann Chir 32:555–560

    PubMed  CAS  Google Scholar 

  5. Allieu Y et al (1984) Table ronde sur l’instabilité du carpe. Ann Chir Main 3:277–367

    Google Scholar 

  6. Gilula LA, Destouet JM, Weeks PM, Young LV, Wray RC (1984) Roentgenographic diagnosis of the painful wrist. Clin Orthop Relat Res 187:52–64

    PubMed  Google Scholar 

  7. Mayfield JK (1984) Patterns of injury to carpal ligaments. Clin Orthop Relat Res 187:36–42

    PubMed  Google Scholar 

  8. Kuhlmann N (1979) Les mécanismes de l’articulation du poignet. Ann Chir 33:711–719

    PubMed  CAS  Google Scholar 

  9. Lanoy JF, Mazas Y, Mazas F, Rengeval JP (1982) Etude radiologique des centres de rotation du poignet. Ann Chir Main 1:227–232

    Article  PubMed  CAS  Google Scholar 

  10. Schernberg F, Gérard Y (1983) L’exploration radiologique du poignet. Rev Chir Orthop 69:521–531

    PubMed  CAS  Google Scholar 

  11. Kapandji A (1987) Biomécanique du carpe et du poignet. Ann Chir Main 6:147–169

    Article  PubMed  CAS  Google Scholar 

  12. Schernberg F (1990) Roentgenographic examination of the wrist. J Hand Surg 15B:210–228

    Google Scholar 

  13. Sennwald GR, Zdravkovic V, Kern HP, Jacob H (1993) Kinematics of the wrist and its ligaments. J Hand Surg 18A:805–814

    Google Scholar 

  14. Craigen MA, Stanley JK (1995) Wrist kinematics. Row, column or both? J Hand Surg 20B:165–170

    Google Scholar 

  15. Garcia-Elias M, Ribe M, Rodriguez J, Cots M, Casas J (1995) Influence of joint laxity on scaphoid kinematics. J Hand Surg 20B:379–382

    Google Scholar 

  16. Nuttall D, Trail IA, Stanley JK (1998) Movement of the scaphoid in the normal wrist. J Hand Surg Br 23:762–764

    PubMed  CAS  Google Scholar 

  17. Camus EJ, Millot F, Larivière J, Rtaimate M, Raoult S (2008) The double-cup carpus: a demonstration of the variable geometry of the carpus. Chir Main 27(1):12–19

    Article  PubMed  Google Scholar 

  18. Youm Y, Mcmurtry RY, Flatt A, Gillespie TE (1978) Kinematics of the wrist. J Bone Joint Surg 60 A:423–431

    Google Scholar 

  19. Kuhlmann N, Gallaire M, Pineau H (1978) Déplacements du scaphoïde et du semi-lunaire au cours des mouvements du poignet. Ann Chir 32:543–553

    PubMed  CAS  Google Scholar 

  20. De Lange A, Kauer JM, Huiskes R (1985) Kinematic behaviour of the human wrist joint: a roentgen-stereophotogrammetric analysis. J Orthop Res 3:56–64

    Article  PubMed  Google Scholar 

  21. Ruby LK, Cooney WP, An KN, Linscheid RL, Chao EY (1988) Relative motion of selected carpal bones: a kinematic analysis of the normal wrist. J Hand Surg 13A:1–10

    Google Scholar 

  22. Savelberg HH, Koolos JG, De Lange A, Huiskes R, Kauer JM (1991) Human carpal recruitment and three-dimensional carpal motion. Orthop Res 9:693–704

    Article  CAS  Google Scholar 

  23. Kobayashi M, Berger RA, Nagy L, Linscheid RL, Ushiyama S, Ritt M, An KN (1997) Normal kinematics of carpal bones: a three dimensional analysis of carpal bone motion relative to the radius. J Biomech 30:787–793

    Article  PubMed  CAS  Google Scholar 

  24. Berger RA, Crowninshield RD, Flatt AE (1982) The three-dimensional rotational behaviors of the carpal bones. Clin Orthop 167:303–310

    PubMed  Google Scholar 

  25. Berger RA, Blair WF, Crowninshield RD, Flatt AE (1982) The scapholunate ligament. J Hand Surg 7A:87–91

    Google Scholar 

  26. Werner FW, Short WH, Fortino MD, Palmer AK (1997) The relative contribution of selected carpal bones to global wrist motion during simulated planar and out-of-plane wrist motion. J Hand Surg 22A:708–713

    Google Scholar 

  27. Ishikawa JI, Cooney WP, Niebur G, An KN, Minami A, Kaneda K (1999) The effects of wrist distraction on carpal kinematics. J Hand Surg 24A:113–120

    Article  Google Scholar 

  28. Crisco JJ, Mcgovern RD, Wolfe SW (1999) Noninvasive technique for measuring in vivo three-dimensional carpal bone kinematics. J Orthop Res 17:96–100

    Article  PubMed  CAS  Google Scholar 

  29. Moojen TM, Snel JG, Ritt MJ, Kauer JM, Venema HW, Bos KE (2002) Three-dimensional carpal kinematics in vivo. Clin Biomech 17:506–514

    Article  CAS  Google Scholar 

  30. Moutet F, Chapel A, Cinquin PH, Rosepitet L (1990) Imagerie du carpe en trois dimensions. Ann Chir Main Mbre Sup 9:32–37

    Article  CAS  Google Scholar 

  31. Patterson RM, Nicodemus CL, Viegas SF, Elder KW, Rosenblatt J (1998) High-speed, three-dimensional kinematic analysis of the normal wrist. J Hand Surg 23A:446–453

    Google Scholar 

  32. Moritomo H, Viegas SF, Elder K, Nakamura K, Dasilva MF, Patterson RM (2000) The scaphotrapezio-trapezoidal joint. Part 2: a kinematic study. J Hand Surg 25A:911–920

    Google Scholar 

  33. Wolfe SW, Crisco JJ, Katz LD (1997) A non-invasive method for studying in vivo carpal kinematics. J Hand Surg 22B:147–152

    Google Scholar 

  34. Sun JS, Shih TTF, Ko CM, Chang CH, Hang YS, Hou SM (2000) In vivo kinematic study of normal wrist motion: an ultrafast computed tomographic study. Clin Biomech 15:212–216

    Article  CAS  Google Scholar 

  35. Patterson RM, Elder KW, Viegas SF, Buford WL (1995) Carpal bone anatomy measured by computer analysis of three-dimensional reconstructions of computed tomography images. J Hand Surg 20A:923–929

    Google Scholar 

  36. Feipel V, Rooze M (1999) Three-dimensional motion patterns of the carpal bones: an in-vivo study using three-dimensional computed tomography and clinical applications. Surg Radiol Anat 21:125–131

    Article  PubMed  CAS  Google Scholar 

  37. Wolfe SW, Neu C, Crisco JJ (2000) In vivo scaphoid, lunate and capitate kinematics in flexion and in extension. J Hand Surg 25A:860–869

    Google Scholar 

  38. Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE (2002) Scaphoid kinematics in vivo. J Hand Surg 27A:1003–1010

    Google Scholar 

  39. Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE (2003) In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg 28A:81–87

    Google Scholar 

  40. Camus EJ, Millot F, Larivière J, Rtaimate M, Raoult S (2004) Kinematics of the wrist using 2D and 3D analysis. Biomechanical and clinical deductions. Surg Radiol Anat 26:399–410

    PubMed  CAS  Google Scholar 

  41. Ritt MJ, Bishop AT, Berger RA, Linscheid RL, Berglund LJ, An KN (1998) Lunotriquetral ligament properties: a comparison of three anatomic subregions. J Hand Surg Am 23:425–431

    Article  PubMed  CAS  Google Scholar 

  42. Ritt MJ, Linscheid RL, 3rd Cooney WP, Berger RA, An KN (1998) The lunotriquetral joint: kinematic effects of sequential ligament sectioning, ligament repair, and arthrodesis. J Hand Surg Am 23(3):432–445

    Article  PubMed  CAS  Google Scholar 

  43. Mitsuyasu H, Patterson RM, Shah MA, Buford WL, Iwamoto Y, Viegas SF (2004) The role of the dorsal intercarpal ligament in dynamic and static scapholunate instability. J Hand Surg Am 29(2):279–288

    Article  PubMed  Google Scholar 

  44. Short WH, Werner FW, Green JK, Weiner MM, Masaoka S (2002) The effect of sectioning the dorsal radiocarpal ligament and insertion of a pressure sensor into the radiocarpal joint on scaphoid and lunate kinematics. J Hand Surg Am 27(1):68–76

    Article  PubMed  Google Scholar 

  45. Larsen CF, Amadio PC, Gilula LA, Hodge JC (1995) Analysis of carpal instability: I. Description of the scheme. J Hand Surg Am 20(5):757–764

    Article  PubMed  CAS  Google Scholar 

  46. Hodge JC, Gilula LA, Larsen CF, Amadio PC (1995) Analysis of carpal instability: II. Clinical applications. J Hand Surg Am 20(5):765–776

    Article  PubMed  CAS  Google Scholar 

  47. Viegas SF, Yamaguchi S, Boyd NL, Patterson R (1999) The dorsal ligament of the wrist: anatomy, mechanical properties, and function. J Hand Surg 24A:456–468

    Article  Google Scholar 

  48. Ishiko T, Puttlitz CM, Lotz JC, Diao E (2003) Scaphoid behavior after division of the transverse carpal ligament. J Hand Surg 28A:267–271

    Google Scholar 

  49. Mayfield JK, Johnson RP, Kilcoyne RK (1980) Carpal dislocations: pathomechanics and progressive perilunar instability. J Hand Surg 5A:226–241

    Google Scholar 

  50. Short WH, Werner FW, Fortino MD, Palmer AK, Mann KA (1995) A dynamic biomechanical study of scapholunate ligament sectioning. J Hand Surg 20A:986–999

    Google Scholar 

  51. Kapandji AI, Martin-Bouyer Y, Verdeille S (1991) Three-dimensional CT study of the carpus under pronation-supination constraints. Ann Chir Main 10:36–47 [French]

    CAS  Google Scholar 

  52. Linscheid RL, Dobyns JH (2002) Dynamic carpal stability. Keio J Med 51:140–147

    Article  PubMed  Google Scholar 

  53. Koebke J, Fehrmann P, Mockenhaupt J (1989) Stress on the normal and pathologic wrist joint. Handchir Mikrochir Plast Chir 21:127–133

    PubMed  CAS  Google Scholar 

  54. Werner FW, Glisson RR, Murphy DJ, Palmer AK (1986) Force transmission trough the radioulnar carpal joint: effect of ulnar lengthening and shortening. Handchir Mikrochir Plast Chir 18:304–308

    PubMed  CAS  Google Scholar 

  55. Hara T, Horii E, An KN, Cooney WP, Linscheid RL, Chao EY (1992) Force distribution across the wrist joint: application of pressure-sensitive conductive rubber. J Hand Surg 17A:339–347

    Google Scholar 

  56. Schuind F, Cooney WP, Linscheid RL, An KN, Chao EYS (1995) Force and pressure transmission trough the normal wrist. A theoretical two-dimensional study in the posteroanterior plane. J Biomech 28:587–601

    Article  PubMed  CAS  Google Scholar 

  57. Genda E, Horii E (2000) Theoretical stress analysis in wrist joint – neutral position and functional position. J Hand Surg 25B:292–295

    Google Scholar 

  58. Sato S (1995) Load transmission trough the wrist joint: a biomechanical study comparing the normal and pathological wrist (abstract, art in Japanese). Nippon Seikeigeka Gakkai Zasshi 69:470–483

    PubMed  CAS  Google Scholar 

  59. Dufour M, Pillu M (2006) Biomécanique fonctionnelle. Issy-les-Moulineaux/Elsevier, Masson [French], pp 371

    Google Scholar 

  60. Kaufmann RA, Pfaeffle HJ, Blankenhorn BD, Stabile K, Robertson D, Goitz R (2006) Kinematics of the midcarpal and radiocarpal joint in flexion and extension: an in vitro study. J Hand Surg 31A:1142–1148

    Google Scholar 

  61. Kuhlmann JN (2002) La stabilité et les instabilités radio- et médio-carpiennes. Sauramps Médical, Montpellier

    Google Scholar 

  62. Berger RA, Imeada T, Berglund L, An KN (1999) Constraint and material properties of the subregions of the scapholunate interosseous ligament. J Hand Surg 24A:953–962

    Article  Google Scholar 

  63. Short WH, Werner FW, Green JK, Masaoka S (2002) Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate. J Hand Surg 27A:991–1002

    Google Scholar 

  64. Short WH, Werner FW, Green JK, Masaoka S (2005) Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate: part II. J Hand Surg 30A:24–34

    Google Scholar 

  65. Short WH, Werner FW, Green JK, Masaoka S (2007) Biomechanical evaluation of ligamentous stabilizers of the scaphoid and lunate: part III. J Hand Surg 32A:297.e1–297.e18

    Google Scholar 

  66. Sennwald GR, Zdravkovic V, Oberlin C (1994) The anatomy of the palmar scaphotriquetral ligament. J Hand Surg 76B:147–149

    Google Scholar 

  67. Tang JB, Ryu J, Kish V (1997) Scapholunate interosseous ligament sectioning adversely affects excursions of radial wrist extensor and flexor tendons. J Hand Surg 22A:720–725

    Google Scholar 

  68. Berger RA (2001) The anatomy of the ligaments of the wrist and distal radioulnar joints. Clin Orthop Relat Res Feb (383):32–40

    Google Scholar 

  69. Moritomo H, Viegas SF, Elder K, Nakamura K, Dasilva MF, Patterson RM (2000) The scaphotrapezio-trapezoidal joint. Part 1: an anatomic and radiographic study. J Hand Surg 25A:899–910

    Google Scholar 

  70. Slutsky DJ (2008) The incidence of dorsal radiocarpal ligament tears in patients having diagnostic wrist arthroscopy for wrist pain. J Hand Surg 33A:332–334

    Google Scholar 

  71. Gayet LE, Texereau J, Condroyer A, Duport G, Clarac JP (2000) Modélisation cinématique du carpe et instabilité. Rev Chir Orthop 86(suppl II):87 [French]

    Google Scholar 

  72. Sicre G, Laulan J, Rouleau B (1997) Scaphotrapeziotrapezoid osteoarthritis after scaphotrapezial ligament injury. J Hand Surg 22B:189–190

    Google Scholar 

  73. Herren DB, Lehmann O, Simmen BR (1998) Does trapeziectomy destabilize the carpus? J Hand Surg 23B:676–679

    Google Scholar 

  74. Garcia-Elias M, Lluch AL, Farreres A, Castillo F, Saffar P (1999) Resection of the distal scaphoid for scaphotrapeziotrapezoid osteoarthritis. J Hand Surg 24B:448–452

    Google Scholar 

  75. Saffar P, Semaan I (1994) The study of the biomechanics of wrist movements in an oblique plane. A preliminary report. In: Schuind F, An KN, Cooney WP III, Garcia-Elias M (eds) Advances in the biomechanics of the hand and wrist. Plenum Press, New York, NATO ASI Series A: life sciences. Vol. 256: pp 305–311

    Google Scholar 

  76. Moritomo H, Apergis EP, Herzberg G, Werner FW, Wolfe SW, Garcia-Elias M (2007) IFSSH committee report of wrist biomechanics committee: biomechanics of the so-called dart-throwing motion of the wrist. J Hand Surg 32A:1447–1453

    Google Scholar 

  77. Masquelet AC, Strube F, Nordin JY (1993) The isolated scapho-trapezio-trapezoid ligament injury. Diagnosis and surgical treatment in four cases. J Hand Surg 18B:730–735

    Google Scholar 

  78. Cowey AJ, Carmont MR, Tins B, Ford DJ (2007) Flexor carpi radialis rupture reined in! Inj Extra 38(3):90–93 (Elsevier Online)

    Article  Google Scholar 

  79. Verkellen K, Dauwe D, Demuynck M, Kestelijn P, Vanden Berghe L (1992) Spontaneous ruptures of the flexor carpi radialis tendon secondary to STT osteoarthritis. Acta Orthop Belg 58:474–476

    Google Scholar 

  80. Oberlin C (1990) Carpal instability and desaxations. Anatomical bases. Clinical and Radiologic study. Elsevier – conférence d’enseignement de la SOFCOT. 38:235–50 [French]

    Google Scholar 

  81. Watson HK, Yasuda M, Guidera PM (1996) Lateral lunate morphology: an X-ray study. J Hand Surg 21A:759–763

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Camus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Camus, E. (2013). Carpal Biomechanics: Application to Ligamentous Injuries. In: Camus, E., Van Overstraeten, L. (eds) Carpal Ligament Surgery. Springer, Paris. https://doi.org/10.1007/978-2-8178-0379-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0379-1_2

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0378-4

  • Online ISBN: 978-2-8178-0379-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics