Skip to main content

Chatting Between the Brain and White Adipose Tissues

  • Chapter
  • First Online:
Physiology and Physiopathology of Adipose Tissue

Abstract

Over the past decades, numerous papers have been published demonstrating the importance of the relationships between the brain and white adipose tissues in regard to body weight and metabolism regulation. Indeed the brain mainly via the sympathetic nervous system control body fat mass both by regulating adipocytes metabolism (lipolysis and lipogenesis), secretory activity (leptin and other adipokines) as well as development. In turn fat mass will send information to some brain areas via sensory nerves as well as via changes in metabolic and hormonal signals. Altogether these data are in support of a feedback loop between white adipose tissues and the brain. This crosstalk plays a major role in the regulation of energy homeostasis and has been shown to be altered according to physiological and pathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballantyne B, Raffery AT (1974) The intrinsic autonomic innervation of white adipose tissue. Cytobios 10:187

    CAS  Google Scholar 

  • Bamshad M, Aoki VT, Adkison MG et al (1998) Central nervous system origins of the sympathetic system outflow to white adipose tissue. Am J Physiol 276:R291–R299

    Google Scholar 

  • Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253

    Article  PubMed  CAS  Google Scholar 

  • Bartnes TJ, Shrestha Y, Vaughan CH et al (2010) Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endo 318:34–43

    Article  Google Scholar 

  • Berthoud HR, Fox EA, Neuhuber W (2006) Vagaries of adipose tissue innervation. Am J Physiol 291:R1240–R1242

    Article  CAS  Google Scholar 

  • Bowers RR, Festuccia WTL, Song CK et al (2004) Sympathetic innervation of adipose tissue and its regulation of fat cell number. Am J Physiol 286:R1167–R1175

    Article  CAS  Google Scholar 

  • Bradley RL, Mansfield JPR, Maratos-Flier E (2005) Neuropeptides, including neuropeptide Y and melanocortins, mediate lipolysis in murine adipocytes. Obseity Res 13:653–661

    Article  CAS  Google Scholar 

  • Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ (2007) Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148:5339–5347

    Article  PubMed  CAS  Google Scholar 

  • Brito NA, Brito MN, Bartness TJ (2008) Differntial sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol 294:R1445–R1452

    Article  CAS  Google Scholar 

  • Buchanan JB, Johnson RW (2007) Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology 86:183–190

    Article  PubMed  CAS  Google Scholar 

  • Cammisotto PG, Bukowiecki LJ (2002) Mechanisms of leptin secretion from white adipocytes. Am J Physiol 283:C244–C250

    CAS  Google Scholar 

  • Campfield LA, Smith FJ, Burn P (1996) The ob protein (leptin) pathway—a link between adipose tissue mass and central neural networks. Horm Metab Res 28:619–632

    Article  PubMed  CAS  Google Scholar 

  • Cao L, Choi EY, Liu X et al (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab 14:324–338

    Article  PubMed  CAS  Google Scholar 

  • Castan I, Valet P, Voisin T et al (1992) Identification and functional studies of a specific peptide YY-preferring receptor in dog adipocytes. Endocrinology 131:1970–1976

    Article  PubMed  CAS  Google Scholar 

  • Castan I, Valet P, Quideau N et al (1994) Antilipolytic effects of alpha 2-adrenergic agonists, neuropeptide Y, adenosine, and PGE1 in mammal adipocytes. Am J Physiol 266:R1141–R1147

    PubMed  CAS  Google Scholar 

  • Casteilla L, Dani C (2006) Adipose tissue-derived cells: from physiology to regenerative medicine. Diabetes Metab 32:393–401

    Article  PubMed  CAS  Google Scholar 

  • Chao PT, Yang L, Aja S et al (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13:573–583

    Article  PubMed  CAS  Google Scholar 

  • Cline MA, Nandar W, Prall BC et al (2008) Central visfatin causes orexigenic effects in chicks. Behav Brain Res 186:293–297

    Article  PubMed  CAS  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal- weight and obese humans. New Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  • Coope A, Milanski M, Araujo EP et al (2008) AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Lett 82:1471–1476

    Article  CAS  Google Scholar 

  • Cousin B, Casteilla L, Lafontan M et al (1993) Local sympathetic denervation of white adipose tissue in rats induces preadipocyte proliferation without noticeable changes in metabolism. Endocrinology 33:2255–2262

    Article  Google Scholar 

  • Cousin B, Bascands-Viguerie N, Kassis N et al (1996) Cellular changes during cold acclimatation in adipose tissues. J Cell Physiol 167:285–289

    Article  PubMed  CAS  Google Scholar 

  • Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Stem Cells 3:301–313

    Article  CAS  Google Scholar 

  • Dantzer R, Bluthé RM, Gheusi G et al (1998) Molecular basis of sickness behavior. Ann N Y Acad Sci 856:132–138

    Article  PubMed  CAS  Google Scholar 

  • Elabd C, Chiellini C, Carmona M et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Bjorbaek C, Ahima RS et al (1998) Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547

    Article  PubMed  CAS  Google Scholar 

  • Farooqi IS, Jebb SA, Langmac G et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New Engl J Med 341:879–884

    Article  PubMed  CAS  Google Scholar 

  • Fishman RB, Dark J (1987) Sensory innervation of white adipose tissue. Am J Physiol 253:R042–R044

    Google Scholar 

  • Foster MT, Bartness TJ (2006) Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Physiol 291:1630–1637

    Article  CAS  Google Scholar 

  • Fu L, Isobe K, Zeng Q et al (2007) Beta-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectin receptor 2 and tumor necrosis factor-alpha expression in adipocytes. Eur J Pharmacol 569:155–162

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426–430

    Article  PubMed  CAS  Google Scholar 

  • Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as ana endocrine organ. Mol Cell Endocrinol 316:129–139

    Article  PubMed  CAS  Google Scholar 

  • Giordano A, Morroni M, Santone G et al (1996) Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocyto 25:125–136

    Article  CAS  Google Scholar 

  • Giordano A, Frontini A, Murano I et al (2005) Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 53:679–687

    Article  PubMed  CAS  Google Scholar 

  • Giordano A, Song CK, Bowers RR et al (2006) Hite adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol 291:R1243–R1255

    Article  CAS  Google Scholar 

  • Grujic D, Susulic VS, Harper ME et al (1997) Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 272:17686–17693

    Article  PubMed  CAS  Google Scholar 

  • Guillod-Maximin E, Roy AF, Vacher CM et al (2009) Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol 200:93–105

    Article  PubMed  CAS  Google Scholar 

  • Gullicksen PS, Della-Fera MA, Baile CA (2003) Leptin-induced adipose apoptosis: Implications for body weight regulation. Apoptosis 8:327

    Article  PubMed  CAS  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M et al (1995) Weight reducing effect of the plasma protein encoded by the obsess gene. Science 269:543–546

    Article  PubMed  CAS  Google Scholar 

  • Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin N Am 37:753–768

    Article  CAS  Google Scholar 

  • Hallschmid M, Randeva H, Tan BK et al (2009) Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes 58:637–640

    Article  PubMed  CAS  Google Scholar 

  • Hamrick MW, Della Fera MA, Choi YH et al (2007) Injections of leptin into rat ventromedial hypothalamus increase adipocyte apoptosis in peripheral fat and in bone marrow. Cell Tissue Res 327:133

    Article  PubMed  CAS  Google Scholar 

  • Haque MS, Minokoshi Y, Hamai M et al (1999) Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48:1706

    Article  PubMed  CAS  Google Scholar 

  • Himms-Hagen J (1990) Brown adipose thermogenesis: interdisciplinary studies. FASEB J 4:2890–2898

    PubMed  CAS  Google Scholar 

  • Jimenez M, Barbatelli G, Allevi R, Cinti S et al (2003) β3-adrenoceptor knockout in C57BL/6 J mice depresses the occurence of brown adipocytes in white fat. Eur J Biochem 270:699–705

    Article  PubMed  CAS  Google Scholar 

  • Jones DD, Ramsay TG, Hausman GJ, Martin RJ (1992) Norepinephrine inhibits rat pre-adipocyte proliferation. Int J Obes 16:349–354

    CAS  Google Scholar 

  • Jordan SD, Könner AC, Brüning JC (2010) Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci 67:3255–3273

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond 140:578–596

    Article  PubMed  CAS  Google Scholar 

  • Kreier F, Buijs RM (2007) Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am J Physiol 293:R548–R549

    Article  CAS  Google Scholar 

  • Kreier F, Fliers E, Voshol PJ et al (2002) Selective parasympathetic innervation of subcutaneous and intra-abdominal fat-functional implications. J Clin Invest 110:1243–1250

    PubMed  CAS  Google Scholar 

  • Kreier F, Kap YS, Mettenleiter TC et al (2006) Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinol 147:1140–1147

    Article  CAS  Google Scholar 

  • Kubota N, Yano W, Kubota T et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68

    Article  PubMed  CAS  Google Scholar 

  • Kuo LE, Kitlinska JB, Tilan JU et al (2007) Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nature Med 13:803–811

    Article  PubMed  CAS  Google Scholar 

  • Kusminski CM, McTernan PG, Schraw T et al (2007) Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50:634–642

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1993) Fat cell adrenergic receptor and the control of white and brown fat cell function. J Lipid Res 34:1057–1091

    PubMed  CAS  Google Scholar 

  • Lafontan M, Berlan M (1995) Fat cell α2-adrenoceptors: the regulation of fat cell function and lipolysis. Endorine Rev 16:716–738

    CAS  Google Scholar 

  • Lam TK (2010) Neuronal regulation of homeostasis by nutrient sensing. Nat Med16:392

    Google Scholar 

  • Langhans W (2007) Signals generating anorexia during acute illness. Proc Nutr Soc 66:321–330

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Fried SK (2009) Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am J Physiol Endocrinol Metab 296:E1230–E1238

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Jun DJ, Suh BC, Choi BH et al (2005) Dual roles of purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. J Biol Chem 280:28556–28563

    Article  PubMed  CAS  Google Scholar 

  • Liu RH, Mizuta M, Matsukura S (2004) The expression and functional role of nicotinic acetylcholine receptors in rat adipocytes. JPET 310:52–58

    Article  CAS  Google Scholar 

  • Mauriège P, Galitzky J, Berlan M, Lafontan M (1987) Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest 17:156–165

    PubMed  Google Scholar 

  • Mauriège P, De Pergola G, Berlan M, Lafontan M (1988) Human fat cell beta-adrenergic receptors: beta-agonist-dependent lipolytic responses and characterization of beta-adrenergic binding sites on human fat cell membranes with highly selective beta 1-antagonists. J Lipid Res 29:587–601

    PubMed  Google Scholar 

  • Mohamed-Ali V, Bulmer K, Clarke D et al (2000) Beta-Adrenergic regulation of proinflammatory cytokines in humans. Int J Obes Relat Metab Disord 24(Suppl 2):S154–S155

    Article  PubMed  CAS  Google Scholar 

  • Montague CT, Farooqi IS, Whitehead JP et al (1997) Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387:903–908

    Article  PubMed  CAS  Google Scholar 

  • Navarro P, Valverde AM, Benito M, Lorenzo M (1998) Insulin/IGF-I rescues immortalized brown adipocytes from apoptosis down-regulating Bcl-xS expression, in a PI 3 kinase- and map kinase dependent manner. Exp Cell Res 15:213

    Article  Google Scholar 

  • Niijima A (1998) Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J Auton Nerv Syst 73:19–25

    Article  PubMed  CAS  Google Scholar 

  • Niijima A (1999) Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci Lett 262:125–128

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Briscini L, Tonello C et al (1997) Tumor necrosis factor-alpha induces apoptosis in rat brown adipocytes. Cell Death Differ 4:771–778

    Article  PubMed  CAS  Google Scholar 

  • Norman D, Mukherjee S, Symons D et al (1988) Neuropeptides in interscapular and perirenal brown adipose tissue in the rat: a plurality of innervation. J Neurocytol 17:305–311

    Article  PubMed  CAS  Google Scholar 

  • Oh-I S, Shimizu H, Satoh T et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709–712

    Article  PubMed  CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effect of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Pénicaud L, Cousin B, Leloup C et al (2000) The autonomic nervous system, adipose tissue plasticity and energy balance. Nutrition 16:903–908

    Article  PubMed  Google Scholar 

  • Pénicaud L, Cousin B, Laharrague P et al (2002) Adipose tissues as part of the immune system: role of leptin and cytokines. In: Kordon C (ed) Brain somatic cross-talk and the central control of metabolism. Springer, New York, p 81

    Google Scholar 

  • Pénicaud L, Leloup C, Fioramonti X et al (2006) Brain glucose sensing: a subtle mechanism. Curr Opin Clin Nutr Metab Care 9:458–462

    Article  PubMed  Google Scholar 

  • Porte D Jr, Baskin DG, Schwartz MW (2005) Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes 54:1264–1276

    Article  PubMed  CAS  Google Scholar 

  • Potter K (1988) Neuropeptide Y as an autonomic neurotransmitter. Pharmacol Ther 37:251

    Article  PubMed  CAS  Google Scholar 

  • Prunet-Marcassus B, Cousin B et al (2006) From heterogeneity to plasticity in adipose tissues: site-specific differences. Exp Cell Res 312:727–736

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Takahashi N, Hileman SM, Patel HR et al (2004) Adiponectin acts in the brain to decrease body weight. Nat Med 10:524–529

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Azain MJ, Compton MM et al (1998) Brain administration of leptin causes deletion of adipocytes by apoptosis. Endocrinology 139:791

    Article  PubMed  CAS  Google Scholar 

  • Rebuffé-Scrive M (1991) Neuroregulation of adipose tissue: molecular and hormonal mechanisms. Int J Obes 15:83–86

    PubMed  Google Scholar 

  • Ricci MR, Lee MJ, Russell CD et al (2005) Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am J Physiol 288:E798–E804

    CAS  Google Scholar 

  • Ruohonen ST, Pesonen U, Moritz N et al (2008) Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons. A novel model of increased adiposity and impaired glucose tolerance. Diabetes 57:1517–1525

    Article  PubMed  CAS  Google Scholar 

  • Ruschke K, Ebelt H, Klöting N et al (2009) Defective peripheral nerve development is linked to abnormal architecture and metabolic activity of adipose tissue in Nscl-2 mutant mice. PLoS One 4:e5516

    Article  PubMed  CAS  Google Scholar 

  • Scarpace PJ, Matheny M (1998) Leptin induction of UCP1 gene expression is dependent on sympathetic innervation. Am J Physiol 275:E259–E264

    PubMed  CAS  Google Scholar 

  • Schulz C, Paulus K, Lehnert H (2010) Adipocyte-brain: crosstalk. Results Probl Cell Differ 52:189–201

    Article  PubMed  CAS  Google Scholar 

  • Serradeil-Le Gal C, Lafontan M, Raufaste D et al (2000) Characterization of NPY receptors controlling lipolysis and leptin secretion in human adipocytes. FEBS Lett 475:150–156

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Bartness TJ (2005) White adipose tissue sensory nerve denervation mimics lipectomy-induced compensatory increases in adiposity. Am J Physiol 289:R514–R520

    Article  CAS  Google Scholar 

  • Shi H, Song CK, Giordano A, Cinti S, Bartness TJ (2005) Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol 288:R1028–R1037

    Article  CAS  Google Scholar 

  • Shimazu T, Sudo M, Minokoshi Y, Takahashi A (1991) Role of the hypothalamus in insulin dependent glucose uptake in peripheral tissues. Brain Res Bull 27:501–504

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Nikami H, Saito M (1999) Sympathetic activation of glucose utilization in brown adipose tissue in rats. J Biochem 110:688–692

    Google Scholar 

  • Shimizu H, Oh I, Hashimoto K et al (2009) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150:662–671

    Article  PubMed  CAS  Google Scholar 

  • Slavin BG, Ballard KW (1978) Morphological studies of the adrenergic innervation of white adipose tissue. Anta Rec 191:377–389

    Article  CAS  Google Scholar 

  • Song CK, Schwartz GJ, Bartness TJ (2009) Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am J Physiol 296:R501–R511

    CAS  Google Scholar 

  • Song CK, Schwartz GJ, Lester B et al (2010) Leptin injected into white adipose tissue stimulates sensory nerves. In: Neuroscience meeting planner, Society for Neuroscience, San Diego

    Google Scholar 

  • Stanley S, Pinto S, Segal J et al (2010) Identification of a neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc Natl Acad Sci U S A 107:7024–7029

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia IA, Dembski M, Weng X et al (1995) Identification and expression cloning of a leptin receptor OB-R. Cell 83:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Turtzo LC, Marx R, Lane MD (2001) Cross-talk between sympathetic neurons and adipocytes in coculture. Proc Natl Acad Sci U S A 98:12385–12390

    Article  PubMed  CAS  Google Scholar 

  • Vicennati V, Vottero A, Friedman C, Papanicolaou DA (2002) Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 6:905–911

    Google Scholar 

  • Wang R, Cruciani-Guglielmacci C, Migrenne S et al (2006) Effects of oleic acid on disctint populations of neurons in the hypothalamus arcuate nucleux are dependent on extracellular glucose levels. J Neurophysiol 95:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Soni KG, Semache M et al (2008) Lipolysis and the integrated physiology of lipid energy metabolism. Mol Genet Metab 95:117–126

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Lotter E, Mc Kay L, Porte DJ (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505

    Article  Google Scholar 

  • Yang K, Guan H, Arany E et al (2008) Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB J 22:2452–2464

    Article  PubMed  CAS  Google Scholar 

  • Youngstrom TG, Bartness TJ (1995) Cathecolaminergic innervation of white adipose tissue in the Siberian hamster. Am J Physiol 268:R744–R751

    PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Pénicaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag France

About this chapter

Cite this chapter

Pénicaud, L., Lorsignol, A. (2013). Chatting Between the Brain and White Adipose Tissues. In: Bastard, JP., Fève, B. (eds) Physiology and Physiopathology of Adipose Tissue. Springer, Paris. https://doi.org/10.1007/978-2-8178-0343-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0343-2_12

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0342-5

  • Online ISBN: 978-2-8178-0343-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics