Skip to main content

Le tissu adipeux est-il une cible thérapeutique pertinente de l’obésité?

  • Chapter
Physiologie et physiopathologie du tissu adipeux
  • 917 Accesses

Résumé

Les conséquences physiopathologiques de l’excès de tissu adipeux (TA) sont schématiquement de deux ordres: 1) mécaniques, elles concernent les obésités sévères; 2) métaboliques, au sens large, leur prévalence et leur sévérité sont influencées par de nombreux facteurs innés ou acquis que nous allons analyser ici. Si l’on veut judicieusement définir les cibles thérapeutiques, il est donc important de pouvoir caractériser les personnes obèses à risque ou non de complications métaboliques [1–3]. Le sexe masculin, l’âge, la corpulence et la distribution androïde du TA sont des facteurs bien connus [4, 5]. De nouveaux concepts ont été proposés depuis une dizaine d’années comme l’hypothèse de la capacité d’expansion limitée du TA, la dysfonction adipocytaire, les anomalies du trafic des acides gras non estérifiés (AGNE), le rôle spécifique du TA viscéral (TAV), les dépôts ectopiques de lipides, l’inflammation de faible intensité du TA, les lipodystrophies acquises ou la lipotoxicité [2, 5–20]. En d’autres termes, le TA apparaît comme « malade ou non fonctionnel » dans certaines circonstances que nous nous proposons d’analyser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Blüher M (2009) The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol 21: 38–43

    Article  Google Scholar 

  2. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y (2010) Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond) 34 Suppl 2: S4–17

    Article  Google Scholar 

  3. Primeau V, Coderre L, Karelis AD, et al. (2010) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) 35: 971–81

    Article  Google Scholar 

  4. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444: 881–7

    Article  PubMed  Google Scholar 

  5. Jensen MD (2008) Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab 93: S57–63

    Article  Google Scholar 

  6. Danforth E, Jr. (2000) Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 26: 13

    Article  PubMed  CAS  Google Scholar 

  7. Frayn KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45: 1201–10

    Article  PubMed  CAS  Google Scholar 

  8. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51: 7-18

    Google Scholar 

  9. Ravussin E, Smith SR (2002) Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Ann N Y Acad Sci 967: 363–78

    Article  PubMed  CAS  Google Scholar 

  10. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23: 201–29

    Article  PubMed  CAS  Google Scholar 

  11. Bays H, Blonde L, Rosenson R (2006) Adiposopathy: how do diet, exercise and weight loss drug therapies improve metabolic disease in overweight patients? Expert Rev Cardiovasc Ther 4: 871–895

    Article  PubMed  Google Scholar 

  12. Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin North Am 37: 635–46

    Article  PubMed  CAS  Google Scholar 

  13. Heilbronn L, Smith SR, Ravussin E (2004) Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord 28 Suppl 4: S12–21

    Article  Google Scholar 

  14. Unger RH (2003) Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 14: 398–403

    Article  PubMed  CAS  Google Scholar 

  15. Unger RH, Clark GO, Scherer PE, Orci L (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801: 209–14

    Article  PubMed  CAS  Google Scholar 

  16. Virtue S, Vidal-Puig A (2008) It’s not how fat you are, it’s what you do with it that counts. PLoS Biol 6: e237

    Article  PubMed  Google Scholar 

  17. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome — an allostatic perspective. Biochim Biophys Acta 1801: 338–49

    Article  PubMed  CAS  Google Scholar 

  18. Mittendorfer B (2011) Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care 14: 535–41

    Article  PubMed  CAS  Google Scholar 

  19. Arsenault BJ, Beaumont EP, Després JP, Larose E (2011) Mapping body fat distribution: A key step towards the identification of the vulnerable patient? Ann Med Dec 12. [Epub ahead of print]

    Google Scholar 

  20. Guri AJ, Bassaganya-Riera J (2010) Systemic effects of white adipose tissue dysregulation and obesity-related inflammation. Obesity (Silver Spring) 19: 689–700

    Article  Google Scholar 

  21. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9: 367–77

    Article  PubMed  CAS  Google Scholar 

  22. Nielsen S, Guo Z, Johnson CM, Hensrud DD, Jensen MD (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113: 1582–8

    PubMed  CAS  Google Scholar 

  23. Thomas EL, Parkinson JR, Frost GS et al. The missing risk: MRI and MRS phenotyping of abdominal adiposity and ectopic fat. Obesity (Silver Spring) 20: 76–87

    Google Scholar 

  24. Westerink J, Visseren FL (2011) Pharmacological and non-pharmacological interventions to influence adipose tissue function. Cardiovasc Diabetol 10: 13

    Article  PubMed  CAS  Google Scholar 

  25. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121: 2094–2101

    Article  PubMed  CAS  Google Scholar 

  26. Divoux A, Tordjman J, Lacasa D et al. (2010) Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59: 2817–25

    Article  PubMed  CAS  Google Scholar 

  27. Hajer GR, van Haeften TW, Visseren FL (2008) Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 29: 2959–71

    Article  PubMed  CAS  Google Scholar 

  28. Szczepaniak LS, Victor RG, Orci L, Unger RH (2007) Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res 101: 759–67

    Article  PubMed  CAS  Google Scholar 

  29. Klöting N, Fasshauer M, Dietrich A et al. (2010) Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 299: E506–515

    Article  PubMed  Google Scholar 

  30. Carobbio S, Rodriguez-Cuenca S, Vidal-Puig A (2011) Origins of metabolic complications in obesity: ectopic fat accumulation. The importance of the qualitative aspect of lipotoxicity. Curr Opin Clin Nutr Metab Care 14: 520–6

    Article  PubMed  CAS  Google Scholar 

  31. Pataky Z, Makoundou V, Nilsson P et al. (2011) Metabolic normality in overweight and obese subjects. Which parameters? Which risks? Int J Obes (Lond) 35: 1208–15

    Article  CAS  Google Scholar 

  32. Shea JL, Randell EW, Sun G (2011) The prevalence of metabolically healthy obese subjects defined by BMI and dual-energy X-ray absorptiometry. Obesity (Silver Spring) 19: 624–30

    Article  CAS  Google Scholar 

  33. Basdevant A, Clément K (2011) Histoire naturelle et origine des obésités. In: Basdevant A, Bouillot JL, Clément K, Oppert JM, Tounian P, eds. Traité de Médecine et chirurgie de l’obésité. Lavoisier, Médecine Sciences publications. Paris pp 10–20

    Google Scholar 

  34. Cancello R, Henegar C, Viguerie N et al. (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54: 2277–86

    Article  PubMed  CAS  Google Scholar 

  35. Capel F, Klimcakova E, Viguerie N et al. (2009) Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 58: 1558–67

    Article  PubMed  CAS  Google Scholar 

  36. Rizkalla SW, Prifti E, Cotillard A, et al. (2011) Differential effects of macronutrient content in 2 energy-restricted diets on cardiovascular risk factors and adipose tissue cell size in moderately obese individuals: a randomized controlled trial. Am J Clin Nutr 95: 49–63

    Article  PubMed  Google Scholar 

  37. Villarroya F, Domingo P, Giralt M (2009) Drug-induced lipotoxicity: lipodystrophy associated with HIV-1 infection and antiretroviral treatment. Biochim Biophys Acta 1801: 392–9

    PubMed  Google Scholar 

  38. Garg A (2011) Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96: 3313–25

    Article  PubMed  CAS  Google Scholar 

  39. Taksali SE, Caprio S, Dziura J et al. (2008) High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype. Diabetes 57: 367–71

    Article  PubMed  CAS  Google Scholar 

  40. Gavi S, Feiner JJ, Melendez MM, Mynarcik DC et al. (2007) Limb fat to trunk fat ratio in elderly persons is a strong determinant of insulin resistance and adiponectin levels. J Gerontol A Biol Sci Med Sci 62: 997–1001

    Article  PubMed  Google Scholar 

  41. Herbst KL, Tannock LR, Deeb SS, Purnell JQ et al. (2003) Köbberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care 26: 1819–24

    Article  PubMed  Google Scholar 

  42. Dutour A, Roll P, Gaborit B et al. (2011) High prevalence of laminopathies among patients with metabolic syndrome. Hum Mol Genet 20: 3779–86

    Article  PubMed  CAS  Google Scholar 

  43. Shay CM, Carnethon MR, Church TR et al. (2011) Lower extremity fat mass is associated with insulin resistance in overweight and obese individuals: the CARDIA study. Obesity (Silver Spring) 19: 2248–53

    Article  Google Scholar 

  44. Ziegler O, Quilliot D (2008) Obésité de la personne âgée: épidémiologie et conséquences. In: Hébuterne X, Alix E, Raynaud-Simon A, Vellas B, eds. Traité de nutrition de la personne âgée. Springer. Paris p 111–21

    Google Scholar 

  45. Ruderman N, Chisholm D, Pi-Sunyer X, Schneider S (1998) The metabolically obese, normal-weight individual revisited. Diabetes 47: 699–713

    Article  PubMed  CAS  Google Scholar 

  46. Wildman RP, Muntner P, Reynolds K et al. (2008) The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med 168: 1617–24

    Article  PubMed  Google Scholar 

  47. Srinivasan SR, Wang R, Chen W, Wei CY et al. (2009) Utility of waist-to-height ratio in detecting central obesity and related adverse cardiovascular risk profile among normal weight younger adults (from the Bogalusa Heart Study). Am J Cardiol 104: 721–4

    Article  PubMed  Google Scholar 

  48. Romero-Corral A, Somers VK, Sierra-Johnson J et al. (2009) Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J 31: 737–46

    Article  PubMed  Google Scholar 

  49. Zamboni M, Mazzali G, Fantin F, Rossi A et al. (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 18: 388–95

    Article  PubMed  CAS  Google Scholar 

  50. Stenholm S, Harris TB, Rantanen T, Visser M et al. (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11: 693–700

    Article  PubMed  Google Scholar 

  51. Srinivasan SR, Myers L, Berenson GS (2002) Predictability of childhood adiposity and insulin for developing insulin resistance syndrome (syndrome X) in young adulthood: the Bogalusa Heart Study. Diabetes 51: 204–9

    Article  PubMed  CAS  Google Scholar 

  52. Nguyen QM, Srinivasan SR, Xu JH, Chen W et al. (2008) Changes in risk variables of metabolic syndrome since childhood in pre-diabetic and type 2 diabetic subjects: the Bogalusa Heart Study. Diabetes Care 31: 2044–9

    Article  PubMed  CAS  Google Scholar 

  53. Youssef AA, Valdez R, Elkasabany A, Srinivasan SR et al. (2002) Time-course of adiposity and fasting insulin from childhood to young adulthood in offspring of parents with coronary artery disease: the Bogalusa Heart Study. Ann Epidemiol 12: 553–9

    Article  PubMed  Google Scholar 

  54. Sherar LB, Eisenmann JC, Chilibeck PD et al. (2011) Relationship between trajectories of trunk fat mass development in adolescence and cardiometabolic risk in young adulthood. Obesity (Silver Spring) 19: 1699–706

    Article  Google Scholar 

  55. Liska D, Dufour S, Zern TL et al. (2007) Interethnic differences in muscle, liver and abdominal fat partitioning in obese adolescents. PLoS One 2: e569

    Article  PubMed  Google Scholar 

  56. Anand SS, Tarnopolsky MA, Rashid S et al. (2011) Adipocyte hypertrophy, fatty liver and metabolic risk factors in South Asians: the Molecular Study of Health and Risk in Ethnic Groups (mol-SHARE). PLoS One 6: e22112

    Article  PubMed  CAS  Google Scholar 

  57. Kursawe R, Eszlinger M, Narayan D, et al. (2010) Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes 59:2288–96

    Article  PubMed  CAS  Google Scholar 

  58. Weiss R, Taksali SE, Dufour S et al. (2005) The “obese insulin-sensitive’ adolescent: importance of adiponectin and lipid partitioning. J Clin Endocrinol Metab 90: 3731–7

    Article  PubMed  CAS  Google Scholar 

  59. Barker DJ, Osmond C, Forsen TJ, Kajantie E (2005) Trajectories of growth among children who have coronary events as adults. N Engl J Med 353: 1802–9

    Article  PubMed  CAS  Google Scholar 

  60. Bhargava SK, Sachdev HS, Fall CH et al. (2004) Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood. N Engl J Med 350: 865–75

    Article  PubMed  CAS  Google Scholar 

  61. Bouhours-Nouet N, Dufresne S, de Casson FB et al. (2008) High birth weight and early postnatal weight gain protect obese children and adolescents from truncal adiposity and insulin resistance: metabolically healthy but obese subjects? Diabetes Care 31: 1031–6

    Article  PubMed  CAS  Google Scholar 

  62. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115: e290–6

    Article  PubMed  Google Scholar 

  63. Sjöström CD, Lystig T, Lindroos AK (2011) Impact of weight change, secular trends and ageing on cardiovascular risk factors: 10-year experiences from the SOS study. Int J Obes (Lond) 35: 1413–20

    Article  Google Scholar 

  64. Karlsson J, Taft C, Ryden A, Sjöström L et al. (2007) Ten-year trends in health-related quality of life after surgical and conventional treatment for severe obesity: the SOS intervention study. Int J Obes (Lond) 31:1248–61

    Article  CAS  Google Scholar 

  65. Chaston TB, Dixon JB (2008) Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond) 32: 619–28

    Article  CAS  Google Scholar 

  66. Ciangura C, Bouillot JL, Lloret-Linares C et al. (2009) Dynamics of change in total and regional body composition after gastric bypass in obese patients. Obesity (Silver Spring) 18: 760–5

    Article  Google Scholar 

  67. Marquez-Quinones A, Mutch DM, Debard C et al. (2010) Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake. Am J Clin Nutr 92: 975–84

    Article  PubMed  CAS  Google Scholar 

  68. Gogebakan O, Kohl A, Osterhoff MA et al. (2011) Effects of weight loss and long-term weight maintenance with diets varying in protein and glycemic index on cardiovascular risk factors: the diet, obesity, and genes (DiOGenes) study: a randomized, controlled trial. Circulation 124: 2829–38

    Article  PubMed  Google Scholar 

  69. Sacks FM, Bray GA, Carey VJ et al. (2009) Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 360: 859–73

    Article  PubMed  CAS  Google Scholar 

  70. Giugliano D, Esposito K (2008) Mediterranean diet and metabolic diseases. Curr Opin Lipidol 19: 63–8

    PubMed  CAS  Google Scholar 

  71. Nordmann AJ, Nordmann A, Briel M et al. (2006) Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 166: 285–93

    Article  PubMed  CAS  Google Scholar 

  72. Shai I, Schwarzfuchs D, Henkin Y et al. (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359: 229–41

    Article  PubMed  CAS  Google Scholar 

  73. Larsen TM, Dalskov SM, van Baak M et al. (2010) Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med 363: 2102–13

    Article  PubMed  CAS  Google Scholar 

  74. Kastorini CM, Milionis HJ, Esposito K, Giugliano D et al. (2011) The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 57: 1299–13

    Article  PubMed  CAS  Google Scholar 

  75. Fisher G, Hyatt TC, Hunter GR, Oster RA et al. (2010) Effect of diet with and without exercise training on markers of inflammation and fat distribution in overweight women. Obesity (Silver Spring) 19: 1131–1136

    Article  Google Scholar 

  76. Klimcakova E, Kovacikova M, Stich V, Langin D (2010) Adipokines and dietary interventions in human obesity. Obes Rev 11: 446–56

    Article  PubMed  CAS  Google Scholar 

  77. Madsen EL, Rissanen A, Bruun JM et al. (2008) Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: a 3-year weight loss study. Eur J Endocrinol 158: 179–87

    Article  PubMed  CAS  Google Scholar 

  78. Poitou C, Dalmas E, Renovato M et al. (2011) CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol 31: 2322–30

    Article  PubMed  CAS  Google Scholar 

  79. Stanhope KL, Schwarz JM, Keim NL et al. (2009) Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 119: 1322–34

    Article  PubMed  CAS  Google Scholar 

  80. Magkos F (2010) Exercise and fat accumulation in the human liver. Curr Opin Lipidol 21: 507–17

    Article  PubMed  CAS  Google Scholar 

  81. Ziegler O (2011) Traitements médicamenteux de l’obésité. In: Basdevant A, Bouillot JL, Clément K, Oppert JM, Tounian P, eds. Traité de Médecine et chirurgie de l’obésité. Lavoisier, Médecine Sciences publications. Paris p 450–61

    Google Scholar 

  82. Després JP, Golay A, Sjöström L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121–34

    Article  PubMed  Google Scholar 

  83. Astrup A, Carraro R, Finer N et al. (2011) Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int J Obes (Lond) Aug 16. doi: 10.1038/ijo.2011.158

    Google Scholar 

  84. Bays HE, Laferrere B, Dixon J et al. (2009) Adiposopathy and bariatric surgery: is’ sick fat’ a surgical disease? Int J Clin Pract 63: 1285–1300

    Article  PubMed  CAS  Google Scholar 

  85. Clément K (2011) Bariatric surgery, adipose tissue and gut microbiota. Int J Obes (Lond) 35 Suppl 3: S7–15

    Article  Google Scholar 

  86. Gastaldelli A, Harrison SA, Belfort-Aguilar R et al. (2009) Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50: 1087–93

    Article  PubMed  CAS  Google Scholar 

  87. Rogers PM, Mashtalir N, Rathod MA et al. (2008) Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes 57: 2321–31

    Article  PubMed  CAS  Google Scholar 

  88. Simha V, Subramanyam L, Szczepaniak L et al. (2011) Comparison of Efficacy and Safety of Leptin Replacement Therapy in Moderately and Severely Hypoleptinemic Patients with Familial Partial Lipodystrophy of the Dunnigan Variety. J Clin Endocrinol Metab Dec 14. [Epub ahead of print]

    Google Scholar 

  89. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444: 868–74

    Article  PubMed  CAS  Google Scholar 

  90. Tseng YH, Cypess AM, Kahn CR (2010) Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9: 465–82

    Article  PubMed  CAS  Google Scholar 

  91. Tam J, Vemuri VK, Liu J et al. (2010) Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest 120: 2953–66

    Article  PubMed  CAS  Google Scholar 

  92. Patti ME (2010) Rehashing endocannabinoid antagonists: can we selectively target the periphery to safely treat obesity and type 2 diabetes? J Clin Invest 120: 2646–48

    Article  PubMed  CAS  Google Scholar 

  93. Lam YY, Mitchell AJ, Holmes AJ et al. (2011) Role of the gut in visceral fat inflammation and metabolic disorders. Obesity (Silver Spring) 19: 2113–120

    Article  CAS  Google Scholar 

  94. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121: 2126–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ziegler .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Paris

About this chapter

Cite this chapter

Ziegler, O., Krempf, M. (2013). Le tissu adipeux est-il une cible thérapeutique pertinente de l’obésité?. In: Physiologie et physiopathologie du tissu adipeux. Springer, Paris. https://doi.org/10.1007/978-2-8178-0332-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0332-6_26

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0331-9

  • Online ISBN: 978-2-8178-0332-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics