Skip to main content

The Trigeminal Nerve Pathways and Their Central Projections

  • Chapter
  • First Online:
Stress and Orality

Abstract

The major part of the trigeminal sensory hodology systematically follows the three-stage nerve pattern: periphery to brainstem, brainstem to diencephalon, and diencephalon to telencephalon. Trigeminal afferents project also to various non-trigeminal nervous areas, for instance, nucleus of the solitary tract, reticular formation, vestibular nuclei, superior colliculus, and medulla. Pathological conditions may explain how abnormal excessive and/or nociceptive trigeminal inputs (muscular but may be also periodontal, articular, etc.) could follow these connecting pathways and perturb the normal function of these different nervous centers. Clinicians should no longer be puzzled by unexplained irregular heart rate, digestive problems, dizziness, lumbar pain, or painful calf spasms in stressed and introverted patients who clench their teeth tightly and/or durably and/or frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cortex cerebri.

  2. 2.

    Please see Fig. 4 in chapter “Useful Physiological Reminders” about the factors of reticular activity and Fig. 8 in chapter “The Behavioral Side of Clenching” about “on-off” reticular units under psycho-emotional influences.

  3. 3.

    Projections from the (VIIb), (IX), and (X) nerves and C1–C3 sensory roots to the (NS) [12, 24, 30, 50, 75, 79, 96, 101], the area postrema to the ipsilateral (MeN) [60]. Vagal and glossopharyngeal inputs project to the nucleus paratrigeminalis dorsalis; this nucleus and adjacent areas can be a convergence zone for intraoral, mandibular, and dental trigeminal afferents [21, 45, 46, 99] and vagal, glossopharyngeal, and oropharyngeal afferents [2, 100, 101]. This mixed projection zone can be largely involved in trigemino-spinal reflexes, in trigemino-visceral integrated phenomena, and in orofacial reflexes and oral motor behaviors such as swallowing. What’s more different integrative modalities for trigeminal nociceptive inputs between males and females [9, 10] have been noted at the level of SnC which can explain some clinical human gender discrepancies in TMD. The projections to the trigeminal motor nucleus (MoN) may connect oral receptors and stomatognathic muscles; they facilitate masticatory and swallowing reflexes [2, 3, 27, 30, 38, 46, 48, 53, 57, 58, 65, 69, 93, 112]. In this way, human periodontal receptors can initiate positive or negative feedback [2, 35, 45, 46, 48, 70].

  4. 4.

    They terminate at the central areas which direct visceral and vegetative inputs. These play a role in intensifying painful sensations and/or associated autonomic manifestations of cardiac and respiratory rhythmic variations.

  5. 5.

    They terminate at various levels of the bulbar and pontine reticular formation: they are involved in motor and vasomotor reactions and in awakening, alertness, and behavioral and motor expressions (avoidance reactions, taking flight, muscle tone adaptation, etc.) which are linked to the nociceptive component.

  6. 6.

    They terminate at the level of the controlateral superior colliculus [6, 31, 40, 52, 113, 118]: they are involved in orientation reflexes. Other studies [6, 88] have shown that some orofacial fibers relayed into the rostral part of the trigeminal SN project to the controlateral colliculus superior. This colliculus also receives visual, auditive, and somatosensory inputs. These afferents have a behavioral role in eye control, head, and body movements [23, 95]. Some EOM and nuchal muscle afferents project to the cervical chord (C1 à C3), suggesting that there are possible interactions between these two sensory afferent groups [83]. All these scientific data can shed light on clinical symptoms such as vertigo when classical investigations remain ineffective.

  7. 7.

    They reach several thalamic and hypothalamic nuclei. Most somesthetic thalamus projections (ventro-posteromedial, VPM) may originate from the NP, SnO, and SnI, which corresponds to a fine localization and discrimination of the stimuli [108]. The SnC inputs have more complex thalamic projections with nociceptive integration. Trigemino-hypothalamic projections have been confirmed by some electrophysiological recordings [102105] particularly in the ventromedial nucleus which regulates eating behavior. Ventromedial cells were activated by both periodontal and gastric stimulations. This projection can come directly from the TBNC [43] or be relayed by the parabrachial area [7, 20, 90, 119]. The parabrachial nucleus also receives trigeminal nociceptive inputs relayed by the SnC [55]. Just note that the parabrachial nucleus receives from the brainstem a number of inputs that project to the amygdala [73], that is, nervous center mainly implicated in aggressive behavior (see chapter “The Behavioral Side of Clenching”). There are collateral projections of the trigemino-hypothalamic tractus neurons to the colliculus [123], substantia nigra, nucleus pretectalis anterior, and hypothalamic nuclei [59]. After passing through these subcortical relays and integrations, the trigeminal inputs end in the telencephalon (cerebral cortex). The identified areas are somesthetic SI and SII [4, 7, 66, 74, 98] near the fissure of Rolando; they receive thalamic ventro-posteromedial and posterior group nuclei inputs [7]. This cortical representation participates in the somatotopic organization (body scheme) previously pointed out [78] and includes dental afferents [89].

  8. 8.

    A controlateral cerebellar projection originating from the SnI and relayed in the principal and dorsal accessory subnuclei of the inferior olive was identified [40]. The periodontal inputs can inform the cerebellum about the occlusal mandibular position as they modulate stomatognathic antagonistic muscle activity. More recently, tactile cutaneous trigeminal stimulations have been found to project to deep cerebellar nuclei, inferior olive, and cerebral cortex, perhaps to control the timing of behavior [87]. The cerebellum is a major integrating and controlling center of mandibular synergical movements during mastication in mammals [44, 56, 111]. In effect the stomatognathic system must perform several complex functions about alimentary behavior from prehension to swallowing.

  9. 9.

    In the vestibular nuclei, cervical proprioceptive afferents come mainly from the central cervical nucleus, but vestibular projections to TBNC and to C1–C2 medulla also exist [106]. The nucleus paratrigeminalis receives sensory inputs from trigeminal, glossopharyngeal, and vagus nerves. It projects to bulbar, pontine, and possibly thalamic structures associated with nociception, thermoregulation, and cardiovascular control. This nucleus can act as a medullar relay interposed between sensory afferents and different structures related to homeostatic functions [19]. The visceral convergence of the nucleus paratrigeminalis dorsalis can be functionally extended according to cystitis-related recorded activations [13]; it might be implicated in some TMD puzzling clinical symptoms such as unexplained prolonged fever. The projections from the trigeminal spinal subnuclei to the spinal cord [64, 65, 76, 80, 88, 109] will be described in Sect. 7 of chapter “Pathophysiological Conditions”.

  10. 10.

    After crossing the superior cerebellar peduncle [45, 46, 95], they are ipsilaterally distributed to cerebellar cortex or to cerebellar subcortical nuclei (interpositus and lateralis).

References

  1. Allen GV, Barbrick B, Esser MJ (1996) Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res 715:125–135

    PubMed  CAS  Google Scholar 

  2. Altschuler SM, Bao X, Bieger D et al (1989) Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol 283:248–268

    PubMed  CAS  Google Scholar 

  3. Anderson SA, Mahan PE (1971) Interaction of tooth pulp and periodontal ligament receptors in a jaw-depression reflex. Exp Neurol 32:295–302

    PubMed  CAS  Google Scholar 

  4. Anderson SA, Keller O, Vylicky L (1973) Cortical activity evoked from tooth pulp afferents. Brain Res 120:221–229

    Google Scholar 

  5. Arvidsson J, Pfaller K (1990) Central projections of C4-C8 dorsal root ganglia in the rat studied by anterograde transport of WGA-HRP. J Comp Neurol 292:349–362

    PubMed  CAS  Google Scholar 

  6. Auroy P, Irthun B, Woda A (1991) Oral nociceptive activity in the rat superior colliculus. Brain Res 549:575–584

    Google Scholar 

  7. Barnett EM, Evans GD, Sun N et al (1995) Anterograde tracing of trigeminal afferent pathways from the murine tooth pulp to cortex using herpes simplex virus type 1. J Neurosci 15:2972–2984

    PubMed  CAS  Google Scholar 

  8. Basbaum AI, Fiels HL (1978) Endogenous pain control mechanisms: review and hypothesis. Ann Neurol 4:451–462

    PubMed  CAS  Google Scholar 

  9. Bereiter DA (2001) Sex differences in brainstem neural activation after injury to the TMJ region. Cell Tissue Org 169(3):226–237

    CAS  Google Scholar 

  10. Bereiter DA, Shen S, Benetti AP (2002) Sex differences in amino acid release from rostral trigeminal subnucleus caudalis after acute injury to the TMJ region. Pain 98(1–2):89–99

    PubMed  CAS  Google Scholar 

  11. Billig I, Yatim N, Compoint C (1995) Cerebellar afferences from the mesencephalic trigeminal nucleus in the rat. Neuroreport 6(17):2293–2296

    PubMed  CAS  Google Scholar 

  12. Blessing WW, Yu YH, Nalivaiko E (1999) Medullary projections of rabbit carotid sinus nerve. Brain Res 816(2):405–410

    PubMed  CAS  Google Scholar 

  13. Bon K, Lantéri-Minet M, Menétrey D (1997) Involvement of the dorsal paratrigeminal nucleus in visceral pain-related phenomena. C R Acad Sci Paris 320:607–613

    PubMed  CAS  Google Scholar 

  14. Brodal A (1947) Central course of afferent fibers for pain in facial, glossopharyngeal and vagus nerves: clinical observations. Arch Neurol Psych Chicago 57:292–306

    CAS  Google Scholar 

  15. Bukowska D, Grottel K (1997) Cells in and outside the motor trigeminal nucleus projecting to the cerebellar paramedian lobule. Neuroreport 8(13):2953–2956

    PubMed  CAS  Google Scholar 

  16. Bukowska D, Zguczynski L, Mierzejewska-Krzyzowska B, Sikora E (1998) Collateral projections of trigeminal sensory neurons to both cerebellar paramedian lobules in the rabbit: demonstration by fluorescent double labeling study. Acta Neurobiol Exp (Wars) 58(4):253–261

    CAS  Google Scholar 

  17. Bukowska D, Mierzejewska-Krzyzowska B, Zguczynski L (2006) Topography and axonal collaterals of trigeminocerebellar projection to the paramedian lobule and uvula in the rabbit cerebellum. Acta Neurobiol Exp (Wars) 66(2):145–151

    CAS  Google Scholar 

  18. Burton H, Craig AD Jr, Poulos DA, Molt JT (1979) Efferent projections from temperature sensitive recording loci within the marginal zone of the nucleus caudalis of the spinal trigeminal complex in the cat. J Comp Neur 183:753–778

    PubMed  CAS  Google Scholar 

  19. Caous CA, de Sousa Buck H, Lindsey CJ (2001) Neuronal connections of the paratrigeminal nucleus: a topographic analysis of neurons projecting to bulbar, pontine and thalamic nuclei related to cardiovascular, respiratory and sensory functions. Auton Neurosci 94(1–2):14–24

    PubMed  CAS  Google Scholar 

  20. Cechetto DF et al (1985) Spinal and trigeminal dorsal horn projections to the parabrachial nucleus in the rat. J Comp Neurol 22:153–160

    Google Scholar 

  21. Chan-Palay V (1978) The paratrigeminal nucleus. I. Neurons and synaptic organization. J Neurocytol 7:405–418

    PubMed  CAS  Google Scholar 

  22. Cody FW, Richardson HC (1978) Mossy and climbing fibres projections of trigeminal inputs to cerebellar cortex in the cat. Brain Res 53:352–356

    Google Scholar 

  23. Cohen JD, Castro-Alamancos MA (2010) Behavioural State dependency of Neural Activity and Sensory (Whisker) responses in Superior Colliculus. J Neurophysiol 104:1661–1672

    PubMed  Google Scholar 

  24. Cottle MK (1964) Degeneration studies of primary afferents of IX th and X th cranial nerves in the cat. J Comp Neurol 122:329

    PubMed  CAS  Google Scholar 

  25. Craig AD (1992) Spinal and trigeminal lamina I input to the locus coeruleus anterogradely labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat and the monkey. Brain Res 584:325–328

    PubMed  CAS  Google Scholar 

  26. Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    PubMed  CAS  Google Scholar 

  27. Craig AD Jr, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  28. Craig AD Jr, Dostrovsky JO (1991) Thermoreceptive lamina I trigeminothalamic neurons project to the nucleus submedius in the cat. Exp Brain Res 85:470–474

    PubMed  CAS  Google Scholar 

  29. Dado RJ, Giesler GJ Jr (1990) Afferent input to nucleus submedius in rats: retrograde labeling of neurons in the spinal cord and caudal medulla. J Neurosci 10:2672–2686

    PubMed  CAS  Google Scholar 

  30. Dunker E, Von Rehren D (1973) Liaisons fonctionnelles entre le système vagal et les “neurones de la douleur” du complexe nucléaire trigéminal. In: Janzen R, Keidel W, Hertz A, Steichele C (eds) La Douleur. Masson & Co (ed), Paris, pp 138–140

    Google Scholar 

  31. Edwards SB, Ginsburgh CL, Henkel CK, Stein BF (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–330

    PubMed  CAS  Google Scholar 

  32. Elias SA, Taylor A, Somjen G (1987) Direct and relayed projection of periodontal receptor afferents to the cerebellum in the ferret. Proc Roy Soc Lond B 231:199–216

    CAS  Google Scholar 

  33. Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-fuse nuclei. J Comp Neurol 353:506–528

    PubMed  CAS  Google Scholar 

  34. Ferr FWL (1961) Structural relation of the trigeminal tract to upper cervical roots and the solitary nucleus in the cat. Exp Neurol 4:134–148

    Google Scholar 

  35. Funakoshi M, Nakashima N (1980) Excitation of Masseter muscle spindle induced by Periodontal stimulation. J Dent Res Abstracts 422:992

    Google Scholar 

  36. Gerard MW (1923) Afferent impulses of the trigeminal nerves, the intramedullary course of the painful thermal and tactile impulses. Arch Neurol Psych 9:306–338

    Google Scholar 

  37. Gobel S, Purvis MB (1972) Anatomical studies of the organization of the spinal V nucleus: the deep bundles and the spinal V tract. Brain Res 48:27–44

    PubMed  CAS  Google Scholar 

  38. Goldberg LJ (1971) Masseter muscle excitation induced by stimulation of periodontal and gingival receptors in man. Brain Res 32:369–381

    PubMed  CAS  Google Scholar 

  39. Hathaway CB, Hu JW, Bereiter DA (1995) Distribution of Fos-like immunoreactivity in the caudal brainstem of the rat following noxious chemical stimulation of the temporomandibular joint. J Comp Neurol 356:444–456

    PubMed  CAS  Google Scholar 

  40. Huerta M, Frankfurter A, Harting J (1983) Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive and cerebellum. J Comp Neurol 220:147–167

    PubMed  CAS  Google Scholar 

  41. Ikeda M (1968) Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as suited by retrograde transport of horseradish peroxidase. J Comp Neurol 133:71–88

    Google Scholar 

  42. Ikeda M (1989) Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as suited by retrograde transport of horseradish peroxidase. J Comp Neurol 184:567–586

    Google Scholar 

  43. Iwata K, Kenshalo DR, Dubner R Jr, Nahlin RL (1992) Diencephalic projections from the superficial and deep laminae of the medullary dorsal horn in the rat. J Comp Neurol 321:404–420

    PubMed  CAS  Google Scholar 

  44. Jacquart G, Mahler P, Kachani-Mansour R (1986) Growth of trigemino-cerebellar areas in infant rat studied by micrometric and cytophometric methods. Arch Oral Biol 31(9):573–576

    PubMed  CAS  Google Scholar 

  45. Jacquin MF, Semba K, Rhoades RW, Egger MD (1982) Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum reticular formation and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res 246:285–291

    PubMed  CAS  Google Scholar 

  46. Jacquin M, Semba K, Egger MD, Rhoades R (1983) Organization of HRP-labeled trigeminal mandibular primary afferent neurons in the rat. J Comp Neurol 215:397–420

    PubMed  CAS  Google Scholar 

  47. Karamandilis A (1968) Trigemino-cerebellar connections in the goat studied by means of the retrograde cell degeneration method. J Comp Neurol 133:71–88

    Google Scholar 

  48. Kato J, Wakisaka S, Tabata MJ et al (1994) Induction of fos protein in the rat trigeminal nucleus complex during an experimental tooth movement. Archs Oral Biol 39:723–726

    CAS  Google Scholar 

  49. Kawamura Y (1974) Physiology of mastication. Kawamura (ed), Basel

    Google Scholar 

  50. Kerr WL (1962) Facial vagal and glossopharyngeal nerves in the cat. Arch Neurol 6:264–281

    PubMed  CAS  Google Scholar 

  51. Künzle H (1998) Origin and terminal distribution of the trigeminal projections to the inferior and superior colliculi in the lesser hedgehog tenrec. Eur J Neurosci 10(1):368–376

    PubMed  CAS  Google Scholar 

  52. Künzle H (1998) Trigeminal projections to thalamus and subthalamus in the hedgehog tenrec. Neurosci 86(2):651–661

    CAS  Google Scholar 

  53. Kvinnsland I, Heyeraas KJ, Byers MR (1992) Effect of traumatic occlusion on CGRP and SP immunoreactive nerve fibre morphology in rat molar pulp and periodontium. Histochemistry 97:111–120

    PubMed  CAS  Google Scholar 

  54. Leamey CA, Ho SM (1998) Afferent arrival and onset of functional activity in the trigeminothalamic pathway of the rat. Brain Res Dev Brain Res 105(2):195–207

    PubMed  CAS  Google Scholar 

  55. Li J, Xiong K, Pang Y et al (2006) Medullary dorsal horn neurons providing axons to both the parabrachial nucleus and thalamus. J Comp Neurol 498(4):539–551

    PubMed  Google Scholar 

  56. Limoge A, Limoge-Lendais I (1992) Neurophysiologie générale. Régulation et comportements. Masson (éd), Paris

    Google Scholar 

  57. Lund JP, Lamarre Y (1973) The importance of positive feed-back from periodontal pressoreceptors during voluntary isometric contraction of jaw closing muscles in man. J Biol Bucc 1:345–351

    CAS  Google Scholar 

  58. Lund JP, Lavigne G, Kim JS (1987) Le rôle des récepteurs parodontaux dans le contrôle de la mastication. Symp Int Physiol Oro Fac Nancy 143–144

    Google Scholar 

  59. Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and cauda medulla of the rat. J Neurophysiol 84(4):2078–2112

    PubMed  CAS  Google Scholar 

  60. Manni E, Lucchi ML, Filippi GM, Bortolami R (1982) Area postrema and the mesencephalic trigeminal nucleus. Exp Neurol 77:39–55

    PubMed  CAS  Google Scholar 

  61. Mantle-St John L, Tracey D (1987) Somatosensory nuclei in the brainstem of the rat: independent projections to the thalamus and cerebellum. J Comp Neurol 255:259–271

    PubMed  CAS  Google Scholar 

  62. Marfurt CF, Rajchert DM (1991) Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol 303:489–511

    PubMed  CAS  Google Scholar 

  63. Matsushita M, Okado N, Ikeda M, Hosoya Y (1981) Descending projections from the spinal and mesencephalic nuclei or the trigeminal nerve to the spinal cord in the cat. A study with the horseradish peroxidase technique. J Comp Neurol 196:173–187

    PubMed  CAS  Google Scholar 

  64. Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neurosci 7:1439–1454

    CAS  Google Scholar 

  65. Matthews PBC (1972) Mammalian muscle receptors and their central-action. Arnold (ed), London

    Google Scholar 

  66. Melzack R, Haugen FP (1957) Responses Evoked at the Cortex by Tooth Stimulation. Am J Physiol 3(190):570–574

    Google Scholar 

  67. Menétrey D, Basbaum AI (1987) Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255:439–450

    PubMed  Google Scholar 

  68. Menétrey D, Leah J, De Pommery J (1987) Efferent projections of the paratrigeminal nucleus in the rat. Neurosci Lett 73:48–52

    PubMed  Google Scholar 

  69. Nakamura Y, Goldberg LJ, Minuzo N, Clemente CD (1970) Masseteric reflex inhibition induced by afferent impulses in the hypoglossal nerve. Brain Res 18:241–255

    PubMed  CAS  Google Scholar 

  70. Ochardson R, Sheena H, Mac Farmale H (1980) The effect of local periodontal anaesthesia on the maximum biting force achieved by human subjects. Arch Oral Biol 25:799–804

    Google Scholar 

  71. Olsewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92:401–413

    Google Scholar 

  72. Olsson KA, Weisberg KG (1989) Interneurons in the trigeminal motor system. In: Van Steenberghe D, Delaat A (eds) Electromyography of jaw reflexes in Man. Lewen Univ Press, Lewen, p p19

    Google Scholar 

  73. Ottersen OP (2004) Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. J Comp Neurol 202(3):335–356

    Google Scholar 

  74. Palazzi C, Paolinelli P, Adrian H, Manns A (1991) Canine Evoked Potentials in the Somatic Cortex of the Dog. J Dent Res 70(4):729

    Google Scholar 

  75. Panneton WM (1991) Primary afferent projections from the upper respiratory tract in the muskrat. J Comp Neurol 308:51–65

    PubMed  CAS  Google Scholar 

  76. Panneton WM, Burton H (1985) Projections from the paratrigeminal nucleus and the medullary and spinal dorsal horns to the peribrachial area in the cat. Neurosci 15:779–797

    CAS  Google Scholar 

  77. Panneton WM, Johnson SN, Christensen ND (1994) Trigeminal projections to the peribrachial region in the muskrat. Neurosci 59:605–625

    Google Scholar 

  78. Penfield W, Rasmussen T (1950) The cerebral cortex of man. Mc Millan (ed), New York

    Google Scholar 

  79. Pfaller K, Arvidsson J (1988) Central distribution of trigeminal and upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidase conjugated to wheat germ agglutinin. J Comp Neurol 268:91–108

    PubMed  CAS  Google Scholar 

  80. Phelan KD, Falls WM (1991) The spino-trigeminal pathway and its spatial relationship to the origin of trigemino-spinal projections in the rat. Neurosci 40:447–496

    Google Scholar 

  81. Phelan KD, Falls WM (1991) A comparison of the distribution and morphology of thalamic, cerebellar and spinal projection neurons in rat trigeminal nucleus interpolaris. Neurosci 40:497–511

    CAS  Google Scholar 

  82. Pinganaud G, Bourcier F, Buisseret-Delmas C, Buisseret P (1999) Primary trigeminal afferents to the vestibular nuclei in the rat: existence of a collateral projection to the vestibulocerebellum. Neurosci Lett 264(1–3):133–136

    PubMed  CAS  Google Scholar 

  83. Piovesan EJ, Kowacs PA, Oshinsky ML (2003) Convergence of Cervical and Trigeminal Sensory Afferents. Curr Pain Headache Rep 7:377–383

    PubMed  Google Scholar 

  84. Rhoades RW, Fish SE, Chiaia NL et al (1989) Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 289(4):641–656

    PubMed  CAS  Google Scholar 

  85. Richardson HC, Cody FWJ, Paul VE, Thomas AG (1978) Convergence of trigeminal and limb inputs onto cerebellar interpositus nuclear neurones in the cat. Brain Res 156:355–359

    PubMed  CAS  Google Scholar 

  86. Rossi F, Brodal A (1957) Terminal distribution of spinoreticular fibers in the cat. Arch Physiol 37:413–429

    Google Scholar 

  87. Rowland NC, Jaeger D (2008) Responses to Tactile Stimulation in Deep Cerebellar Nucleus Neurons Result From Recurrent Activation in Multiple Pathways. J Neurophysiol 99:704–717

    PubMed  Google Scholar 

  88. Ruggiero DA, Ross CA, Reis DJ (1981) Projections from the spinal trigeminal Nucleus to the entire length of the spinal cord in the rat. Brain Res 225:225–233

    PubMed  CAS  Google Scholar 

  89. Salenc C (1979) Projection des nerfs maxillaires et des récepteurs dentaires sur le cortex cérébral du chat. Thèse 3ème cycle Sci Odont Marseille

    Google Scholar 

  90. Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    PubMed  CAS  Google Scholar 

  91. Shigenaga Y, Takabatake M, Sugimoto T, Sakai A (1979) Neurons of marginal layer of trigeminal nucleus caudalis projecting to ventrobasal complex (VB) and posterior nuclear group (PO) demonstrated retrograde labeling with horseradish peroxidase. Brain Res 166:391–396

    PubMed  CAS  Google Scholar 

  92. Shigenaga Y, Sera M, Nishimori T et al (1988) The central projection of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. J Comp Neurol 268(4):489–507

    PubMed  CAS  Google Scholar 

  93. Somana R, Kotchabakdhi N, Walberg F (1980) Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res 38:57–64

    PubMed  CAS  Google Scholar 

  94. South EH, Ritter RC (1986) Substance P-containing trigeminal sensory neurones project to nucleus of the solitary tract. Brain Res 372:283–289

    PubMed  CAS  Google Scholar 

  95. Strazielle C, Mahler P, Jacquart G (1987) Localisation des afférences primaires trigémino-cérébelleuses chez le rat. Wistar Symp Int Physiol Oro Fac Nancy 57–65

    Google Scholar 

  96. Sugimoto T, Fujiyoshi Y, Xiao C et al (1997) Central projection of calcitonin gene-related peptide (CGRP)- and Substance P (SP)-immunoreactive trigeminal primary neurons in the rat. J Comp Neurol 378:425–442

    PubMed  CAS  Google Scholar 

  97. Sugimoto T, Fujiyoshi Y, He YF et al (1997) Trigeminal primary projection to the rat brain stem sensory trigeminal nuclear complex and surrounding structures revealed by anterograde transport of cholera toxin B subunit-conjugated and Bandeiraea simplicifolia isolectin B4-conjugated horseradish peroxidase. Neurosci Res 28(4):361–371

    PubMed  CAS  Google Scholar 

  98. Sunakawa M (1984) Response properties of the tooth pulp-driven neurons in the primary somatosensory cortex (SI) in the cat. Kokubyo Gakkai Zasshi 51:627–640

    PubMed  CAS  Google Scholar 

  99. Takemura M, Sugimoto T, Sakai A (1987) Topographic organization of central terminal region of different branches of the rat mandibular nerve. Exp Neurol 96:540–557

    PubMed  CAS  Google Scholar 

  100. Takemura M, Sugimoto T, Shigenaga Y (1991) Difference in central projection of primary afferents innervating facial and intra-oral structures in the rat. Exp Neurol 111:324–331

    PubMed  CAS  Google Scholar 

  101. Torvik A (1956) Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J Comp Neurol 106:51–141

    PubMed  CAS  Google Scholar 

  102. Trub M (1979) Projections hypothalamiques de la sensibilité desmodontale. Thèse 3ème Sci Odontol Marseille

    Google Scholar 

  103. Trub M, Mei N, Orsini JC (1991) Macro and micro-electrode study of hypothalamic projections of periodontal afferents in the rat and cat. Brain Res Bull 27:29–34

    PubMed  CAS  Google Scholar 

  104. Trub M, Mei N (1991) Effects on periodontal stimulation on VMH neurones in anesthetized rats. Brain Res Bull 27(1):29–34

    PubMed  CAS  Google Scholar 

  105. Trub M, Mei N, Orofino J (1996) Periodontal and gastric convergences within the hypothalamic ventromedial nucleus area - single unit study on anesthetized rats. Behav Brain Res 72:33–37

    Google Scholar 

  106. Valla J, Delfini C, Diagne M et al (2003) Vestibulotrigeminal and vestibulospinal projections in rats: retrograde tracing coupled to glutamic acid decarboxylase immunoreactivity. Neurosci Lett 340(3):225–228

    PubMed  CAS  Google Scholar 

  107. Van Ham JJ, Yeo HC (1992) Somatosensory Trigeminal Projections to the Inferior Olive, Cerebellum and other Precerebellar Nuclei in Rabbits. Eur J Neurosci 4(4):302–317

    PubMed  Google Scholar 

  108. Veinante P, Deschênes M (1999) Single- and Multi-Whisker Channels in the Ascending Projections from the Principal Trigeminal Nucleus in the Rat. J Neurosc 19(12):5085–5095

    CAS  Google Scholar 

  109. Vinay L, Cazalets JR, Clarac F (1995) Evidence for the Existence of a Functional Polysynaptic Pathway From Trigeminal Afferents to Lumbar Motoneurons in the Neonatal Rat. Eup J Neurosci 7:143–151

    CAS  Google Scholar 

  110. Watson CRR, Switzer RL (1978) Trigeminal projections to cerebellar tactile areas in the rat origin mainly from noyau interpolaris and noyau principalis. Neuro Sci Lett 10:77–82

    CAS  Google Scholar 

  111. Westphal A, Divry M (1991) Le comportement manducateur. Presses Univ (éd), Nancy

    Google Scholar 

  112. Yamoshi M, Ozawa M, Kawano J (1991) Effect of Periodontal Sensation on Masticatory Movement in Man. J Dent Res 70(4):802

    Google Scholar 

  113. Yasui Y, Kayahara T, Shiroyama T, Nakano K (1993) Neurons in the intertrigeminal region of the rat send projection fibers to the superior colliculus. Neurosci Lett 159(1–2):39–42

    PubMed  CAS  Google Scholar 

  114. Yokota T, Koyama N (1981) Trigeminal nociceptive neurons in subnucleus reticularis ventralis of Caudal Medulla Oblongata. J Dent Res 60(49):1239

    Google Scholar 

  115. Yokota T, Matsumoto N (1983) Somatotopic distribution of trigeminal nociceptive specific neurones within the caudal somatosensory thalamus of cat. Neurosci Lett 39:125–130

    PubMed  CAS  Google Scholar 

  116. Yokota T, Matsumoto N (1983) Location and functional organization of trigeminal wide dynamic range neurones within the nucleus ventralis posteromedialis of the cat. Neurosci Lett 39:231–236

    PubMed  CAS  Google Scholar 

  117. Yoshida A, Dostrovsky JO, Sessle BJ, Chiang CY (1991) Trigeminal projections to the nucleus submedius of the thalamus of the rat. J Comp Neurol 307:609–625

    PubMed  CAS  Google Scholar 

  118. Yoshida A, Sessle BJ, Dovstrovsky JO, Chiang CY (1992) Trigeminal and dorsal column projections to the anterior pretectal nucleus in the rat. Brain Res 590:81–94

    PubMed  CAS  Google Scholar 

  119. Yoshida A, Chen K, Moritani M et al (1997) Organization of the descending projections from the parabrachial nucleus to the trigeminal sensory nuclear complex and spinal dorsal horn in the rat. J Comp Neurol 383(1):94–111

    PubMed  CAS  Google Scholar 

  120. Zang WB, Li JS, Li HM (1991) SP-like immunoreactivity in the primary trigeminal neurones projecting to the nucleus tractus solitarii. Brain Res 558:87–89

    Google Scholar 

  121. Zeredo JL, Toda K, Soma K (2002) Neck motor unit activities induced by inputs from periodontal mechanoreceptors in rats. J Dent Res 8(1):39–42

    Google Scholar 

  122. Zeredo JL, Toda K, Soma K (2003) Nature of neck motor unit activities evoked by different trigeminal inputs in rats. J Dent Res 82(5):402–405

    PubMed  CAS  Google Scholar 

  123. Zhou J, Shore S (2006) Convergence of spinal trigeminal and cochlear nucleus projections in the inferior colliculus of the guinea pig. J Comp Neurol 495(1):100–112

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Hartmann, F., Cucchi, G. (2014). The Trigeminal Nerve Pathways and Their Central Projections. In: Stress and Orality. Springer, Paris. https://doi.org/10.1007/978-2-8178-0271-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0271-8_7

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0270-1

  • Online ISBN: 978-2-8178-0271-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics