Skip to main content

Discomfort as the Outcome of Parafunctional Clenching

  • Chapter
  • First Online:
Book cover Stress and Orality

Abstract

Parafunctional clenching is a deleterious mood for trigeminal and postural muscular tissues. Moreover, this misunderstood oral habit generates an overstimulation and nociception from the trigeminal territory. If considering various connections between trigeminal and non-trigeminal nervous centers, these are high-potential disruptive factors for physiological pathways through a supposed “neuronal overflowing” mechanism. Stressing conditions do emphasize these disturbances by a central influence (sensitization). Clinical dysfunctional outcome can be highly invalidating for patients and often disconcerting for clinicians. We clearly admit that to spontaneously make a link between the oral sphere and these signs or symptoms seems often illogical. That can happen with uncommon forms of fibromyalgia, migraine, or chronic fatigue, especially with stressed and/or introverted patients. But this kind of persistent events must incitate any clinician to unearth and eliminate the severe parafunctional clenching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact they are closely interrelated according to phylogenetic, ontogenetic, and embryological data. In order to open the Eustachian tube, the TVP makes a lateral movement with the medial pterygoid muscle and interposed fascia. Modifications in the intratympanic pressure result from a Eustachian tube dysfunction: this can explain some hypoacousis and tinnitus observed in TMD [9].

  2. 2.

    The ocular motor system is connected to postural muscles by the medial longitudinal fasciculus (MLF); it is a pathway between the motor and sensory nuclei of the cranial nerves and the anterior horn of the spinal cord, connecting the cranial nerves which intervene in head and eye motility [67] and in equilibration based on its important nervous origin in the vestibular nuclei [10, 55]. It has additional connections with the RF, the CC, the cerebellum, and the CGN. Through its ophthalmic branch (V1), V already plays a part in oculomotility, in the development of orientation selectivity, and more largely in the regulation of the oculo-cephalogyrus system. The oculomotor afferents could reach either the trigeminal MeN [23] or the trigeminal SP [74]. Some studies [14, 105] identified the trigeminal afferents pathways (V1) as the external ocular muscles (EOM), trigeminal ganglion, trigeminal SnC, and cervical medulla (C1,C2). Furthermore, fibers from the trigeminal MeN project to the medial vestibular nucleus. A recent study revealed that a monosynaptic pathway exists between vestibular nuclei and masseter motor neurons [24]. Some trigeminal proprioceptive afferents [21, 25, 30, 50, 59, 93, 104, 107] go across the SnI [49, 120] or NP [120] and project to the cerebellum. Some of these trigemino-cerebellar physiological projections come from PR [31]. Trigeminal afferents (for instance periodontal afferents) have proven that they supplement nicely visual messages to postural stabilization [39]. These are treated by the ­cerebellum with the purpose of refining the balance of the cranio-cervico-facial sphere in posture and motor coordination. These scientific data confirm previous data about possible trigeminal disturbances in the oculo-cephalogyrus system [79]. The evidence of a relationship between functional neck and trigeminal muscle afferent systems was found in the upper cervical chord and lower medulla where trigeminal afferents activate the m. splenius, m. biventer cervicis, and m. complexus [1]. Studies explain this type of close functional coupling between the trigeminal and cervical systems [12, 13, 33, 47, 126]. Jaw-muscle spindle afferents could reach the spinal cord through relays in the SnO and parvocellular RF [26]. Trigeminal inputs project from the NS to all levels of the cord [76, 94, 119]. Neonative polysynaptic pathways could transmit trigeminal stimulations all the way to the lumbar spinal cord. Electromyographic studies in humans [6, 20, 29, 80, 86, 124, 127] have attempted to prove that the trigeminal afferents could contribute to the regulation and stabilization of head posture during physiological functions such as mastication and swallowing. Let’s note that simple changes in the mandibular position have immediate repercussions on the EMG activity of head posture muscles, especially the trapezius [17]. Other EMG studies have also revealed the functional repercussions between the nuchal tonic reflex and the tone of the stomatognathic muscles [36, 38, 63, 71, 96]; trigeminal afferents can modify this reflex [79]. More evidence came from a 7-week-old embryo who responded to a stimulation of trigeminal receptors with a nuchal muscle reflex contraction called the trigemino-neck reflex [108]; this reflex is a sign of early nervous connections between the trigeminal system and head posture system. A new variant of trigemino-cervical reflex was observed in swine [62], but it is not yet been demonstrated in humans. A mouth-opening reflex was reported in a 14-week-old human fetus reacting to palmar stimulation [46]; these data confirm the previously noted connections between the V and the superior spinal roots. The activity of the obliquus capitis inferior muscle is EMG recorded during bruxism [124] which could explain some painful cervical symptoms when such stomatognathic parafunctions persist. In the same way the SCM under EMG responds to different masticatory movements and to intense durable voluntary clenching episodes [129]; this is confirmed for the SCM [20] as well as for the m. trapezius [127]. There is a reflex interaction between nociceptive trigeminal afferents and both upper and lower cervical spinal cord motor neurons [98].

  3. 3.

    These data could help to understand why rifle marksman’s results improve after an occlusal ­equilibration [78].

  4. 4.

    An asymmetrical sensory information originating from that area (e.g., unbalanced occlusion) would affect the head position or its perception and consequently produce a postural asymmetry of other body segments from top to bottom. It has been shown that the loss of occlusal supporting zone has a unilateral and bilateral influence on the weight distribution at the feet during clenching [128]. More recently a potential-evoked-signal investigation revealed that disturbance of the cortical functions regulating visual-motor integration could increase the risk of TMD [99]. Therefore, disorders in head posture regulation – even in body equilibrium – can occur via a trigemino-ocular dysfunction; for example, inputs from MOE, via the V1, could be disturbed by excessive V3 afferents elicited by exacerbated clenching. As we know today it is difficult to identify the CNS levels possibly caused by such disturbances: low pathways with the TBNC and high pathways with the colliculus superior [92], the cerebellum, etc. Regardless, the overstimulated and nociceptive afferent process intensifies reticular influence on motor neurons of stomatognathic [110, 112] and other muscles by creating as much spasticity as the limbic system (emotional factors).

  5. 5.

    During awakening, the serotonin activates some synthesis which is responsible to deferred ­setting of low sleep and paradoxal sleep (REM) by regulating the biosynthesis of hypnogenic substances. The sleeping would occur by diminution of the 5-HT bulbar neuronal activity and by liberation of these substances. The locus coeruleus is well known to be an important nervous structure in physiology of sleeping. It is rather curious to note that ancient French anatomists have originally given to this locus the name of trigeminal vegetative nucleus. Otherwise it has been shown that some hypothalamic 5-HT neurones are activated during awakening particularly during stressful events [54].

  6. 6.

    With the exception of spinal and brainstem detectors, the thermostatic center is primarily represented by the anterior hypothalamus and the preoptic area [10]; more precisely the hypothalamus ventralis posterior fights against cold and the anteromedial supraoptic area fights against heat. The thermosensitive neurons of the region react to blood temperature and to inputs brought by the fibers connected to the cutaneous and muscular thermoreceptors (Ruffini’s corpuscles and Krause’s corpuscles). In vertebrates fever is a major defensive process; prostaglandins, particularly PGE2, help raise the hypothalamic thermostat. However we know that an experimental destruction of the posterior hypothalamus leads to akinesia and the anterior hypothalamus to hyperkinesia.

References

  1. Abrahams VC, Anstee G, Richmond FJ, Rose PK (1979) Neck muscle and trigeminal input to the upper cervical cord and lower medulla of the cat. Can J Physiol Pharmacol 57(6):642–651

    Article  PubMed  CAS  Google Scholar 

  2. Ackermann F (1964) Occlusodontologie et occlusodontie. Rev Franç Odont Stomatol 1053–1054

    Google Scholar 

  3. Alkofide EA, Clark E, El Bermani W et al (1997) The incidence and nature of fibrous continuity between the sphenomandibular ligament and the anterior malleolar ligament of the middle ear. J Orofac Pain 11(1):7–14

    PubMed  CAS  Google Scholar 

  4. Amri M, Car A, Jean A (1984) Medullary control of the pontine swallowing neurons in sheep. Exp Brain Res 55:105–110

    Article  PubMed  CAS  Google Scholar 

  5. Bader JM (1991) Le stress met les neurones à mort. Sci Vie 889:52–59

    Google Scholar 

  6. Bazzotti L (1998) Mandible position and head posture: electromyography of sternocleidomastoids. Cranio 16:100–108

    PubMed  CAS  Google Scholar 

  7. Berstein JM, Mohl ND, Spiller H (1969) Temporomandibular joint dysfunction masquerading as disease of the ear, nose and throat. Trans Am Acad Ophthalmol Otolaryngol 73:1208

    Google Scholar 

  8. Bjorne A, Berven A, Agerberg G (1998) Cervical signs and symptoms in patients with Meniere’s disease: a controlled study. Cranio 16(3):194–202

    PubMed  CAS  Google Scholar 

  9. Block SL (1976) Possible etiology of ear stuffiness (barohypoacousis) in MPD syndrome TMJ and facial pain. J Dent Abstract 55, 752:B250

    Google Scholar 

  10. Bossy J (1990) Anatomie clinique: neuro-anatomie. Springer Verlag (éd), Paris

    Google Scholar 

  11. Bouchet A, Cuilleret J (1980) Anatomie topographique, descriptive et fonctionnelle. La face, la tête et les organes des sens. Simep ed, Paris

    Google Scholar 

  12. Browne PA, Clark GT, Yang Q, Nakano M (1993) Sternocleidomastoid muscle inhibition induced by trigeminal stimulation. J Dent Res 72(11):1503–1508

    Article  PubMed  CAS  Google Scholar 

  13. Browne PA, Clark GT, Kuboki T, Adachi NY (1998) Concurrent cervical and craniofacial pain. A review of empiric and basic science evidence. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 86(6):633–640

    Article  PubMed  CAS  Google Scholar 

  14. Buisseret P, Buisseret-Delmas C, Epelbaum M, Lepercq H (1991) Projections proprioceptives primaires des muscles oculaires extrinsèques sur les noyaux vestibulaires et la région cervicale haute. Résultats anatomiques. Rev Oto Neuro Ophalmol 14:13–17

    Google Scholar 

  15. Burch JG (1966) The cranial attachment of the sphenomandibular ligament. Anat Rec 156:433

    Article  PubMed  CAS  Google Scholar 

  16. Capra NF (1987) Localization and central projections of primary afferent neurons that innervate the temporomandibular joint in cats. Somatosens Mot Res 4(3):201–213

    Article  CAS  Google Scholar 

  17. Ceneviz C, Mehta NR, Forgione A et al (2006) The immediate effect of changing mandibular position on the EMG activity of the masseter, temporalis, sternocleidomastoid and trapezius muscles. Cranio 24(4):237–244

    PubMed  Google Scholar 

  18. Ciampini G, Jean A (1980) Rôle des afférences glosso-pharyngiennes et trigéminales dans le déclenchement et le déroulement de la déglutition. J Physiol 76:49–66

    CAS  Google Scholar 

  19. Ciriello J, Caverson MM (1986) Bidirectional cardiovascular connections between ventrolateral medulla and nucleus of the solitary tract. Brain Res 367:273–281

    Article  PubMed  CAS  Google Scholar 

  20. Clark GT, Browne PA, Nakano M, Yang Q (1993) Co-activation of sternocleidomastoid muscles during jaw clenching. J Dent Res 72(11):1499–1502

    Article  PubMed  CAS  Google Scholar 

  21. Cody FW, Richardson HC (1978) Mossy and climbing fibre projections of trigeminal inputs to cerebellar cortex in the cat. Brain Res 53:352–356

    Article  Google Scholar 

  22. Coleman RD (1970) Temporomandibular joint: relation to the retrodiscal zone to Meckel’s cartilage and lateral pterygoid muscle. J Dent Res 49:626

    Article  PubMed  CAS  Google Scholar 

  23. Cooper S, Daniel P, Whitteridge D (1951) Afferent impulses in the oculomotor nerve, from extrinsic eye muscle. J Physiol 113:363–374

    Google Scholar 

  24. Cuccurazzu B, Deriu F, Tolu E (2007) A monosynaptic pathway links the vestibular nuclei and masseter muscle motoneurons in rats. Exp Brain Res 176(4):665–671

    Article  PubMed  CAS  Google Scholar 

  25. Darian-Smith I, Philipps G (1984) Secondary neurones within a trigemino-cerebellar projection to the anterior lob of the cerebellum in the cat. J Physiol Lond 353:42

    Google Scholar 

  26. Dessem D, Iyadurai OD, Taylor A (1988) The role of periodontal receptors in the jaw-opening reflex in the cat. J Physiol 406:315–330

    PubMed  CAS  Google Scholar 

  27. Dominguez J, Lobato RD, Rivas JJ (1994) Changes in systemic blood pressure and cardiac rhythm induced by therapeutic compression of the trigeminal ganglion. Neurosurgery 34(3):422–428

    Article  PubMed  CAS  Google Scholar 

  28. Draft DW, Klocker D, Theissing J (1971) Costen syndrom und Schallperzeptions Schwerhörigkeit. H N O 19:179

    Google Scholar 

  29. Ehrlich R, Garlick D, Ninio M (1999) The effect of jaw clenching on the electromyographic activities of 2 neck and 2 trunk muscles. J Orofac Pain 13(2):115–120

    PubMed  CAS  Google Scholar 

  30. Elias SA, Taylor A (1984) Direct projections of jaw proprioceptor first-order afferents to the cerebellar cortex in the ferret. J Physiol 353:42

    Google Scholar 

  31. Elias SA, Taylor A, Somjen G (1987) Direct and relayed projection of periodontal receptor afferents to the cerebellum in the ferret. Proc R Soc Lond B Biol Sci 231:199–216

    Article  PubMed  CAS  Google Scholar 

  32. El-Kashlan HK, Shore SE (2004) Effects of trigeminal ganglion stimulation on the central auditory system. Hear Res 189(1–2):25–30

    Article  PubMed  Google Scholar 

  33. Eriksson PO, Haggman-Henrikson B, Nordh E, Zafar H (2000) Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. J Dent Res 79:1378–1384

    Article  PubMed  CAS  Google Scholar 

  34. Fink M, Wähling K, Stiesch-Scholtz M, Tschernitschek H (2003) The functional relationship between the craniomandibular system, cervical spine, and the sacroiliac joint: a preliminary investigation. Cranio 21(3):202–208

    PubMed  Google Scholar 

  35. Fonder AC (1988) The dental distress syndrome (quantified). Quant Med 1:1

    Google Scholar 

  36. Forsberg CM, Hellsing E, Linder-Aronson S, Sheikholeslam A (1989) EMG activity in neck and masticatory muscles in relation to extension and flexion of the head. Eur J Orthod 7:177–184

    Article  Google Scholar 

  37. Frumker SC, Kyle MA (1985) The dentist’s contribution to rehabilitation of cervical posture and function: orthopedic and neurological considerations in the treatment of craniomandibular disorders. Basal Facts 9(3):105–109

    Google Scholar 

  38. Funakoshi A, Amano NO (1974) Periodontal jaw reflexes in the albino rat. J Dent Res 53:598–605

    Article  Google Scholar 

  39. Gangloff P, Perrin PP (2002) Unilateral trigeminal anaesthesia modifies postural control in human subjects. Neurosci Lett 330(2):179–182

    Article  PubMed  CAS  Google Scholar 

  40. Gastaldo E, Quatrale R, Graziani A et al (2006) The excitability of the trigeminal motor system in sleep bruxism: a transcranial magnetic stimulation and brainstem reflex study. J Orofac Pain 20(2):145–155

    PubMed  Google Scholar 

  41. German RZ, Crompton AW, Thexton AJ (2009) Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol 102:1017–1025

    Article  PubMed  Google Scholar 

  42. Grossman SP (1968) Hypothalamic and limbic influences on food intake. Fed Proc 27:1349–1360

    PubMed  CAS  Google Scholar 

  43. Haenggeli CA, Pongstaporn T, Doucet JR, Ryugo DK (2005) Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. J Comp Neurol 484(2):191–205

    Article  PubMed  Google Scholar 

  44. Hamada T, Ono T, Otsuka R et al (2007) Mandibular distraction osteogenesis in a skeletal Class II patient with obstructive sleep apnea. Am J Orthod Dentofacial Orthop 131(3):415–425

    Article  PubMed  Google Scholar 

  45. Higgins GA, Hoffman GE, Wray S, Schwaber JS (1984) Distribution of neurotensin-immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat. J Comp Neurol 226:155–164

    Article  PubMed  CAS  Google Scholar 

  46. Humphrey T (1969) The prenatal development of mouth opening and mouth closure reflexes. Pediatr Dig 11:28–40

    Google Scholar 

  47. Igarashi N, Yamamura K, Yamada Y, Kohno S (2000) Head movements and neck muscle activities associated with the jaw movement during mastication in the rabbit. Brain Res 871:151–155

    Article  PubMed  CAS  Google Scholar 

  48. Izquiedo I (1992) Trends in pharmacological. Sciences 13:7

    Google Scholar 

  49. Jacquart G, Mahler P, Kachani-Mansour R (1986) Growth of trigemino-cerebellar areas in infant rat studied by micrometric and cytophometric methods. Arch Oral Biol 31(9):573–576

    Article  PubMed  CAS  Google Scholar 

  50. Jacquin MF, Semba K, Rhoades RW, Egger MD (1982) Trigeminal primary afferents project bilaterally to dorsal horn and ipsilaterally to cerebellum reticular formation and cuneate, solitary, supratrigeminal and vagal nuclei. Brain Res 246:285–291

    Article  PubMed  CAS  Google Scholar 

  51. Jean A (1984) Brainstem organization of the swallowing network. Brain Behav Evol 25:109–116

    Article  PubMed  CAS  Google Scholar 

  52. Jean A (1990) Brainstem control of swallowing localization and organization of the central pattern generator for swallowing. In: Taylor A (ed) Neurophysiology of the jaw and teeth. McMillan (eds), Basingstoke, pp 294–321

    Google Scholar 

  53. Jean A, Amri M, Calas A (1983) Connections between the ventral medullary swallowing area and the trigeminal motor nucleus of the sheep studied by tracing techniques. J Auton Nerv Syst 7:87–96

    Article  PubMed  CAS  Google Scholar 

  54. Jouvet M (1984) Le comportement onirique. In: Le Cerveau. Pour la Science (éd), Berlin/Paris, p 146

    Google Scholar 

  55. Kahle W, Leonhardt H, Platzer W (1981) Anatomie. Tome 3: système nerveux et organes des sens. Flammarion (éd), Paris

    Google Scholar 

  56. Kalia M, Melusam MM (1980) Brain stem projections of sensory and motor components of the vagus complex in the cat: I – the cervical vagus and nodose ganglion. J Comp Neurol 193:435–465

    Article  PubMed  CAS  Google Scholar 

  57. Kalia M, Sullivan JM (1982) Brainstem projection of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    Article  PubMed  CAS  Google Scholar 

  58. Kapandji AI (1982) Physiologie articulaire. Tome 3: Tronc et rachis. Maloine (éd), Paris

    Google Scholar 

  59. Karamandilis A (1968) Trigemino-cerebellar connections in the goat studied by means of the retrograde cell degeneration method. J Comp Neurol 133:71–88

    Article  Google Scholar 

  60. Karli P (1976) Neurophysiologie du comportment. In: Kayser C (ed) Physiologie. Flammarion (ed), Paris, pp 1331–1454

    Google Scholar 

  61. Kato T, Rompré PH, Montplaisir JY et al (2001) Sleep bruxism: an oromotor activity secondary to microarousal. J Dent Res 80:1940–1944

    Article  PubMed  CAS  Google Scholar 

  62. Kato S, Papuashvili N, Okada YC (2003) Identification and functional characterization of the trigeminal ventral cervical reflex pathway in the swine. Clin Neurophysiol 114(2):263–271

    Article  PubMed  Google Scholar 

  63. Kawamura Y (1974) Physiology of mastication. Kawamura (ed), Basel

    Google Scholar 

  64. Kessler J-P, Jean A (1985) Identification of the medullary swallowing regions in the rat. Exp Brain Res 57:256–263

    Article  PubMed  CAS  Google Scholar 

  65. Kreisberg MK (1986) Headache as a symptom of craniomandibular disorders I: pathophysiology. Cranio 4(2):135–142

    PubMed  CAS  Google Scholar 

  66. Kubo KY, Ichihashi Y, Kurata C et al (2010) Masticatory function and cognitive function. Okajimas Folia Anat Jpn 87(3):135–140

    Article  PubMed  Google Scholar 

  67. Larmande P, Larmande A (1989) Neuro-ophtalmologie. Masson (éd), Paris, pp 147–148

    Google Scholar 

  68. Lavigne GJ, Kato T, Kolta A, Sessle BJ (2003) Neurobiological mechanisms involved in sleep bruxism. Crit Rev Oral Biol Med 14(1):30–46

    Article  PubMed  CAS  Google Scholar 

  69. Levine RA (1999) Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol 20(6):351–362

    Article  PubMed  CAS  Google Scholar 

  70. Lobbezoo E, Souly JP, Montplaisir JY, Lavigne GJ (1996) Striatal D2 receptor binding in sleep bruxism: a controlled study with iodine-123-iodobenzamide and single-photon-emission computed tomography. J Dent Res 75:1804–1810

    Article  PubMed  CAS  Google Scholar 

  71. Lund JP, Nishiyama T, Möller E (1970) Postural activity of the muscles of mastication with the subject upright, inclined and supine. Scand J Dent Res 78:417–424

    PubMed  CAS  Google Scholar 

  72. Maixner W, Fillingim R, Kincaid S (1997) Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom Med 59(5):503–511

    PubMed  CAS  Google Scholar 

  73. Malick A, Burstein R (1998) Cells of origin of the trigeminohypothalamic tract in the rat. J Comp Neurol 400:125–144

    Article  PubMed  CAS  Google Scholar 

  74. Manni E, Palmieri G, Marini R (1971) Extra-ocular muscle proprioception and the descending trigeminal nucleus. Exp Neurol 33:195–204

    Article  PubMed  CAS  Google Scholar 

  75. Marfurt CF, Rajchert DM (1991) Trigeminal primary afferent projections to “non-trigeminal” areas of the rat central nervous system. J Comp Neurol 303:489–511

    Article  PubMed  CAS  Google Scholar 

  76. Matsushita M, Okado N, Ikeda M, Hosoya Y (1981) Descending projections from the spinal and mesencephalic nuclei or the trigeminal nerve to the spinal cord in the cat. A study with the horseradish peroxidase technique. J Comp Neurol 196:173–187

    Article  PubMed  CAS  Google Scholar 

  77. Mc Gregor NR, Butt HL, Zerbes M et al (1996) Assessment of pain (distribution and onset), symptoms, SCL-90-R inventory responses, and the association with infectious events in patients with chronic orofacial pain. J Orofac Pain 10(4):339–350

    CAS  Google Scholar 

  78. Meyer J (1977) Participation des afférences trigéminales dans la régulation tonique posturale orthostatique. Intérêt de l’examen systématique du système manducateur chez les sportifs de haut niveau. Thèse 3ème cycle Sci Odontol Paris

    Google Scholar 

  79. Meyer J, Baron JB (1976) Participation des afférences trigéminales à la régulation tonique posturale. Aspects statique et dynamique. Agressiologie 17(A):33–40

    Google Scholar 

  80. Miyahara T, Haglya N, Ohyama T, Nakamuna Y (1996) Modulations of human soleus H-reflexes in association with voluntary clenching of the teeth. J Neurophysiol 76:2033–2041

    PubMed  CAS  Google Scholar 

  81. Morgan DH, Gooder RL, Christiansen RL, Tiner LW (1995) The TMJ-ear connection. Cranio 13(1):42–43

    PubMed  CAS  Google Scholar 

  82. Myrhaug H (1984) The incidence of ear symptoms in cases of malocclusion and temporomandibular joint disturbances. Br J Oral Surg 2:28

    Google Scholar 

  83. Okeson JP, Philips BA, Berry DTR, Baldwin RM (1994) Nocturnal bruxing events: a report for normative data and cardiovascular response. J Oral Rehabil 2(1):623–630

    Google Scholar 

  84. Ono Y, Yamamoto T, Kubo KY, Onozuka M (2010) Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil 37(8):624–640

    PubMed  CAS  Google Scholar 

  85. Ormeno G, Miralles R, Santander H et al (1997) Body position effects on sternocleidomastoid and masseter EMG pattern activity in patients undergoing occlusal splint therapy. Cranio 15(4):300–309

    PubMed  CAS  Google Scholar 

  86. Palazzi C, Miralles R, Soto MA et al (1996) Body position effect on EMG activity of sternocleidomastoid and masseter muscles in patients with myogenic cranio-cervical-mandibular dysfunction. Cranio 14(3):200–209

    PubMed  CAS  Google Scholar 

  87. Paterson AJ, Lamb AB, Clifford TJ, Lamey PJ (1995) Burning mouth syndrome: the relationship between the HAD scale and parafunctional habits. J Oral Pathol Med 24(7):289–292

    Article  PubMed  CAS  Google Scholar 

  88. Philipp U, Munker G, Komposh G (1972) Die funktion der Tube Eustachii bei Patienten mit Kiefergelenkerkrangungen. Dtsch Zanhärztl Z 27:806

    CAS  Google Scholar 

  89. Pinganaud G, Bernat I, Buisseret P, Buisseret-Delmas C (1999) Trigeminal projections to hypoglossal and facial motor nuclei in the rat. J Comp Neurol 415:91–104

    Article  PubMed  CAS  Google Scholar 

  90. Pinto OF (1962) A new structure related to the temporomandibular joint and middle ear. J Prosthet Dent 12:95

    Article  Google Scholar 

  91. Reydy R, Hartmann F (1992) Le role du nerf trijumeau dans l’oculomotricité. Arqu Portug Oftalmol 3:7–23

    Google Scholar 

  92. Rhoades RW, Fish SE, Chiaia NL et al (1989) Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 289(4):641–656

    Article  PubMed  CAS  Google Scholar 

  93. Richardson HC, Cody FWJ, Paul VE, Thomas AG (1978) Convergence of trigeminal and limb inputs onto cerebellar interpositus nuclear neurones in the cat. Brain Res 156:355–359

    Article  PubMed  CAS  Google Scholar 

  94. Ruggiero DA, Ross CA, Reis DJ (1981) Projections from the spinal trigeminal nucleus to the entire length of the spinal cord in the rat. Brain Res 225:225–233

    Article  PubMed  CAS  Google Scholar 

  95. Sakata T, Yoshimatsu H, Masaki T, Tsuda K (2003) Anti-obesity actions of mastication driven by histamine neurons in rats. Exp Biol Med 228:1106–1110

    CAS  Google Scholar 

  96. Sasaki K, Watanabe M, Inai T, Kanuma A (1984) Change of mandibular position elicited by tonic reflex under EMG biofeedback. J Dent Res 63(4):556

    Google Scholar 

  97. Schwartz HC, Kendrick RW (1984) Internal derangements of the temporomandibular joint: description of clinical syndromes. Oral Surg Oral Med Oral Pathol 58(1):24–29

    Article  PubMed  CAS  Google Scholar 

  98. Serrao M, Rossi P, Parisi L et al (2003) Trigemino-cervical-spinal reflexes in humans. Clin Neurophysiol 114(9):1697–1703

    Article  PubMed  Google Scholar 

  99. Shibukawa Y, Ishikawa T, Kato Y et al (2007) Cerebral cortical dysfunction in patients with temporomandibular disorders in association with jaw movement observation. Pain 128(1–2):180–188

    Article  PubMed  Google Scholar 

  100. Shore SE, Vass Z, Wys NL, Altschuler RA (2000) Trigeminal ganglion innervates the auditory brainstem. J Comp Neurol 419(3):271–285

    Article  PubMed  CAS  Google Scholar 

  101. Shore SE, El Kashlan H, Lu J (2003) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience 119(4):1085–1101

    Article  PubMed  CAS  Google Scholar 

  102. Singh GD, Olmos S (2007) Use of a sibilant phoneme registration protocol to prevent upper airway collapse in patients with TMD. Sleep Breath 11(4):209–216

    Article  PubMed  Google Scholar 

  103. Smelee LE (1988) Odontogeny of relationship of human middle ear and temporomandibular joint. Acta Anat 131:338–341

    Article  Google Scholar 

  104. Somana R, Kotchabakdhi N, Walberg F (1980) Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res 38:57–64

    Article  PubMed  CAS  Google Scholar 

  105. Steinbach MJ (1987) Proprioceptive knowledge of eye position. Vision Res 27(10):1737–1744

    Article  PubMed  CAS  Google Scholar 

  106. Strand FL, Kenneth JR, Zuccarelli LA et al (1991) Neuropeptides hormones as neurotrophic factors. Physiol Rev 71(4):1034–1035

    Google Scholar 

  107. Strazielle C, Mahler P, Jacquart G (1987) Localisation des afférences primaires trigémino-cérébelleuses chez le rat. Wistar Symp Int Physiol Oro Fac Nancy 57–65

    Google Scholar 

  108. Sumino R, Nozaki S, Kato M (1980) Trigemino-neck reflex. In: Oral-facial sensory and motor functions. International oral physiology symposium, Rappongi, pp 28–29

    Google Scholar 

  109. Takahashi T, Ueno T, Ohyama T (2003) Modulation of H reflexes in the forearm during voluntary teeth clenching in humans. Eur J Appl Physiol 90(5–6):651–653

    Article  PubMed  Google Scholar 

  110. Takamatsu T, Inoue T, Tsuruoka M (2005) Involvement of reticular neurons located dorsal to the facial nucleus in activation of the jaw-closing muscle in rats. Brain Res 1055(1–2):93–102

    Article  PubMed  CAS  Google Scholar 

  111. Travell JG, Simons DG (1983) Myofascial pain and dysfunction. The trigger-point manual. Williams & Wilkins (ed), Baltimore, 713p

    Google Scholar 

  112. Travers JB, Yoo JE, Chandran R et al (2005) Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 488(1):28–47

    Article  PubMed  CAS  Google Scholar 

  113. Trub M, Mei N, Orsini JC (1991) Macro and micro-electrode study of hypothalamic projections of periodontal afferents in the rat and cat. Brain Res Bull 27:29–34

    Article  PubMed  CAS  Google Scholar 

  114. Trub M, Mei N (1991) Effects on periodontal stimulation on VMH neurones in anesthetized rats. Brain Res Bull 27(1):29–34

    Article  PubMed  CAS  Google Scholar 

  115. Van Giersbergen PL, Palkovits M, De Jong W (1992) Involvement of neurotransmitters in the nucleus tractus solitarii in cardiovascular regulation. Physiol Rev 72(3):789–824

    PubMed  Google Scholar 

  116. Van Willingen JD (1983) Motoriek van het trigeminussystem. In: Van Willigen JD (ed) Morfologie en functie van het orofaciale systeem. Bohn, Scheltema & Holkema (ed), Utrecht

    Google Scholar 

  117. Vass Z, Shore SE, Nuttall AL, Miller JM (1998) Direct evidence of trigeminal innervation of the cochlear blood vessels. Neuroscience 84(2):559–567

    Article  PubMed  CAS  Google Scholar 

  118. Villarosa GA, Moss RA (1995) Oral behavior patterns as factors contributing to the development of head and facial pain. J Prosthet Dent 54(3):427–430

    Article  Google Scholar 

  119. Vinay L, Cazalets JR, Clarac F (1995) Evidence for the existence of a functional polysynaptic pathway from trigeminal afferents to lumbar motoneurons in the neonatal rat. Eur J Neurosci 7:143–151

    Article  PubMed  CAS  Google Scholar 

  120. Watson CRR, Switzer RL (1978) Trigeminal projections to cerebellar tactile areas in the rat origin mainly from noyau interpolaris and noyau principalis. Neurosci Lett 10:77–82

    Article  PubMed  CAS  Google Scholar 

  121. Weideman CL, Bush DL, Yan-Go FL et al (1996) The incidence of parasomnias in child bruxers versus nonbruxers. Pediatr Dent 18(7):456–460

    PubMed  CAS  Google Scholar 

  122. Weinberg S, Lapointe H (1987) Cervical extension-flexion injury (whiplash) and internal derangement of the temporomandibular joint. J Oral Maxillofac Surg 45(8):653–656

    Article  PubMed  CAS  Google Scholar 

  123. Wen-Bin Z, Ji-Shud L, Hui-Li L (1991) SP-like immunoreactivity in the primary trigeminal neurons projecting to the nucleus tractus solitarii. Brain Res 558:87–89

    Article  Google Scholar 

  124. Widmalm SE (1984) Electromyographic activity in neck muscles at tooth grinding. J Dent Res 63(289):1066

    Google Scholar 

  125. Wurtman R, Wurtman J (1989) Glucides et dépression. Pour la Science 137:44–51

    Google Scholar 

  126. Yamabe Y, Yamashita R, Fujii H (1999) Head, neck and trunk movements accompanying jaw tapping. J Oral Rehabil 26:900–905

    Article  PubMed  CAS  Google Scholar 

  127. Yoshimatsu T, Namikoshi T, Koyama Z et al (1989) Changes of muscles activities in neck and shoulder region during sustained isometric contractions of jaw muscles. Nippon Hotetsu Shika Gakkai Zasshi 33(5):1044–1049

    Article  PubMed  CAS  Google Scholar 

  128. Yoshino G, Higashi K, Nakamura T (2003) Changes in head position due to occlusal supporting zone loss during clenching. Cranio 21(4):89–98

    PubMed  Google Scholar 

  129. Young S, Jordan JC (1982) EMG activity of the sternomastoid muscles in relation to mouth movement. J Dent Res Abstract 61, 4:158

    Google Scholar 

  130. Zettergren-Wijk L, Forsberg C-M, Linder-Aronson S (2006) Changes in dentofacial morphology after adeno-/tonsillectomy in young children with obstructive sleep apnoea – a 5-year follow-up study. Eur J Orthod 28(4):319–326

    Article  PubMed  Google Scholar 

  131. Zhang J, Luo P, Pendlebury WW (2001) Light and electron microscopic observations of a direct projection from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Brain Res 917(1):67–80

    Article  PubMed  CAS  Google Scholar 

  132. Zhou J, Shore S (2004) Projections from the trigeminal nuclear complex to the cochlear nuclei: a retrograde and anterograde tracing study in the guinea pig. J Neurosci Res 78(6):901–907

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag France

About this chapter

Cite this chapter

Hartmann, F., Cucchi, G. (2014). Discomfort as the Outcome of Parafunctional Clenching. In: Stress and Orality. Springer, Paris. https://doi.org/10.1007/978-2-8178-0271-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0271-8_12

  • Published:

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0270-1

  • Online ISBN: 978-2-8178-0271-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics