Skip to main content

La biologie face à l’hétérogénéité du développement des tumeurs Pourquoi certaines tumeurs n’évoluent-elles pas?

Biological analysis of tumor growth heterogeneity

  • Conference paper
  • 252 Accesses

Résumé

Répondre à la question de l’évolution des tumeurs nécessite un rappel des faits anatomocliniques et le développement progressif de nos connaissances fondamentales sur les causes de la carcinogenèse et sur les hypothèses explicatives du développement tumoral.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Triolo VA (1965) NineteenThcentury foundations of cancer research advances in tumor pathology, nomenclature, and theories of oncogenesis. Cancer Res 25: 76–98

    Google Scholar 

  2. Boveri T (1929) The Origin of Malignant Tumors. Baltimore, MD: Williams & Wilkins. pp. 62–63

    Google Scholar 

  3. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79: 137–158

    Article  PubMed  CAS  Google Scholar 

  4. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171: 737–738

    Article  PubMed  CAS  Google Scholar 

  5. Rous P (1959) Surmise and fact on the nature of cancer. Nature 183: 1357–1361

    Article  PubMed  CAS  Google Scholar 

  6. Petersen OW, Polyak K (2010) Stem cells in the human breast. Cold Spring Harbor Perspectives in Biology. 2: a003160.

    Article  PubMed  Google Scholar 

  7. Visvader JE (2011) Cells of origin in cancer. Nature 469: 314–322

    Article  PubMed  CAS  Google Scholar 

  8. Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nature Reviews Cancer 11: 254–267

    Article  PubMed  Google Scholar 

  9. Albeck JG, Brugge JS (2011) Uncovering a tumor suppressor for triple-negative breast cancer. Cell 144: 638–718

    Article  PubMed  CAS  Google Scholar 

  10. Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nature Reviews Cancer 11: 450–457

    Article  PubMed  CAS  Google Scholar 

  11. Maffini MV, Soto AM, Calabro JM, Ucci AA et al. (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117: 1495–1502

    Article  PubMed  CAS  Google Scholar 

  12. Barclay WW et al. (2005) System for studying epithelial-stromal interractions reveals distinct inductive abilities of stroma cells from benign prostatic hyperplasia and prostact cancer. Andocrinology 146: 13–18

    Article  CAS  Google Scholar 

  13. Brodeur GM (2003) Neuroplastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216

    Article  PubMed  CAS  Google Scholar 

  14. Haas D et al. (1988) Complete pathological maturation and regression of stage IV S neuroplastoma with out treatment. Cancer 62: 818–825

    Article  PubMed  CAS  Google Scholar 

  15. Huggins C (1967) Endocrine-induced regression of cancers. Science 156: 1050–1054

    Article  PubMed  CAS  Google Scholar 

  16. Jordan VC et al. (2009) New hypotheses and opportunities in endocrine therapy: amplification of oestrogen-induced apoptosis. Brest 3: S10–S17

    Article  Google Scholar 

  17. Dedruyne F (2002) Hormonal therapy of prostate cancer. Semin Urol Oncol 3: 4–9

    Article  Google Scholar 

  18. Bischoff F (1964) Carcinogenesis through solid state surfaces. Prog Exp Tumor Exp Tumor Res 5: 85–133

    CAS  Google Scholar 

  19. Bussard KM (2010) Reprogramming human cancer cells in the mouse mammary blond. Cancer Res 70: 6336–6343

    Article  PubMed  CAS  Google Scholar 

  20. Kasemier-Kulesa JC (2006) Reprogramming multipoten tumor cells with the embryonic neural crest microenvironnement. Dev Dyn 237: 2657–2666

    Article  Google Scholar 

  21. Maffini MV et al. (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 67: 1405–1410

    Article  Google Scholar 

  22. McCullough AR (1997) Age-dependent induction of hepatic tumor regression by the tissue microenvironnement after transplantation of neoplastically transformed rat liver epithelial cells into the liver. Cancer Res 57: 1807–1873

    PubMed  CAS  Google Scholar 

  23. Stevens LC (1970) The development of transplantable teratocarcinomas from intratesticular grafts of pre-and post implantation mouse embryos. Dev Biol 21: 364–382

    Article  PubMed  CAS  Google Scholar 

  24. Martin P-M, Dussert C, Ouafik L (2010) Stroma: partenaire actif mais sous-estimé de la tumorigenèse, « quand le dialogue remplace le monologue ». Interactions entre les cellules tumorales et leur microenvironnement tissulaire. Oncologie 12: 303–321

    Article  Google Scholar 

  25. Martin P-M, Dussert C, Romain S, Ouafik L (2010) Relations du système plasminogèneplasmine et cancer. Etude moléculaire de facteurs liés à l’invasivité et à la néoangiogenèse. PAI1, PAI2, uPAR valeur pronostique et cibles thérapeutiques potentielles. Oncologie 12: 322–340

    Article  CAS  Google Scholar 

  26. Perou CM, Sørlie T, Eisen MB et al. (2000) Molecular portraits of human breast tumors. Nature 406: 742–752

    Article  Google Scholar 

  27. Sotiriou C, Wirapati P, Loi S et al. (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Instit 98: 262–272

    Article  CAS  Google Scholar 

  28. Van’t Veer LJ, Dai H, van de Vijver MJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536

    Article  Google Scholar 

  29. Van de Vijver MJ, He YD, van’t Veer LJ et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. New Engl J Med 347: 1999–2009

    Article  PubMed  Google Scholar 

  30. Buyse M, Loi S, Van’t Veer L et al. (2006) Validation and clinical utility of a 70-gene pronostic signature for women with node negative breast cancer. J Natl Cancer Instit 98: 1183–1192

    Article  CAS  Google Scholar 

  31. Paik S, Shak S, Tang G et al. (2004) A multigeneassay to predict recurrence of tamoxifentreated, node-negative breast cancer. New Engl J Med 351: 2817–2826

    Article  PubMed  CAS  Google Scholar 

  32. Paik S, Tang G, Shak S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24: 3726–3734

    Article  PubMed  CAS  Google Scholar 

  33. Finak G, Bertos N, Pepin F et al. (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nature Med 5: 518–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this paper

Cite this paper

Martin, P.M. (2012). La biologie face à l’hétérogénéité du développement des tumeurs Pourquoi certaines tumeurs n’évoluent-elles pas?. In: Cancer du sein : surdiagnostic, surtraitement. Springer, Paris. https://doi.org/10.1007/978-2-8178-0249-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0249-7_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0248-0

  • Online ISBN: 978-2-8178-0249-7

Publish with us

Policies and ethics