Skip to main content

Comment augmenter la performance des médicaments anti-HER?

  • Conference paper
Cancer du sein
  • 540 Accesses

Résumé

Les cancers du sein sont ceux qui ont les premiers bénéficié des traitements anti-HER, et ce dès le début des années 2000. Les molécules développées à ce jour n’ont certes pas permis la guérison des formes métastatiques des cancers du sein qui surexpriment HER2, mais en ont modifié l’histoire naturelle et donc le pronostic. De plus, la démonstration en 2005 de l’activité importante du trastuzumab en situation adjuvante a permis de positionner pour la première fois, un traitement anti-HER en situation curative potentielle. Par ailleurs, le développement de cette thérapie anti-HER2 est exemplaire car il est le résultat d’une parfaite collaboration entre le laboratoire et la clinique. On ne peut prescrire ce médicament qu’aux patientes ayant une tumeur où la voie HER2 est la voie oncogénique dominante. La sélection des patientes par un ou des biomarqueurs, suivie de la prescription d’une thérapie adaptée, est ce dont on rêve pour chacune des situations cliniques rencontrées. Aujourd’hui, comprenant mieux la tumorigenèse, le mode d’action ainsi que les mécanismes de résistance des traitements anti-HER et possédant un large éventail de thérapies ciblées, nous pouvons réfléchir à la façon d’augmenter la performance des traitements anti-HER.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Klijn JG, Berns PM, Schmitz PI et al. (1992) The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: A review on 5232 patients. Endocr Rev 13: 3–17

    PubMed  CAS  Google Scholar 

  2. Rimawi M, Shetty PB, Weiss HL et al. (2010) Epidermal growth factor receptor expression in breast cancer association with biological phenotype and clinical outcomes. Cancer 116: 1234–1242

    Article  PubMed  Google Scholar 

  3. Nielsen TO, Hsu FD, Jensen K et al. (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10: 5367–5374

    Article  PubMed  CAS  Google Scholar 

  4. Diaz LK, Cryns VL, Symmans F et al. (2007) Triple negative breast carcinoma and the basal phenotype: from expression profiling to clinical experince. Adv Anat Pathol 14: 419–430

    Article  PubMed  CAS  Google Scholar 

  5. Giltane JM, Rydén L, Cregger M et al. (2007) Quantitative measurement of epidermal growth factor is a negative predictive factor for tamoxifen response in hormonepositive premenopausal breast cancer. J Clin Oncol 25: 3007–3014

    Article  Google Scholar 

  6. Massarweh S, Osborne CK, Creighton CJ et al. (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68: 826–833

    Article  PubMed  CAS  Google Scholar 

  7. Shoyab M, Plowman GD, McDonald VL et al. (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243: 1074–1076

    Article  PubMed  CAS  Google Scholar 

  8. Ross JS, Slodkowska EA, Symmans WF et al. (2009) The HER-2 receptor and breast cancer: ten years of targeted anti-HER2 therapy and personalized medicine. Oncologist 14: 320–368

    Article  PubMed  CAS  Google Scholar 

  9. Karamouzis MV, Badra FA, Papavassiliou AG (2007) Breast cancer: the upgraded role of HER-3 and HER-4. Int J Biochem Cell Biol 39: 851–856

    Article  PubMed  CAS  Google Scholar 

  10. Witton CJ, Reeves JR, Going JJ et al. (2003) Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 200: 290–297

    Article  PubMed  CAS  Google Scholar 

  11. Sassen A, Rochon J, Wild PJ et al. (2008) Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients. Br Cancer Res 10: R2

    Article  Google Scholar 

  12. Hellyer NJ, Kim MS, Koland JG (2001) Heregulin-dependent activation of phosphoinositide 3-kinase and AKT via the erbB2/erbB 3 co-receptor. J Biol Chem 276: 42153–42161

    Article  PubMed  CAS  Google Scholar 

  13. Citri A, Skaria KB, Yarden Y (2003) The deaf and the dumb: the biology of ErbB-2 and erbB-3. Exp Cell Res 284: 54–65

    Article  PubMed  CAS  Google Scholar 

  14. Smith BL, Chin D, Maltzman W et al. (2004) The efficacy of Herceptin therapies is influenced by the expression of other erbB receptors, their lignands and the activation of downstream signaling proteins. Br J Cancer 91: 1190–1194

    PubMed  CAS  Google Scholar 

  15. Yonemori K, Tsuta K, Shimizu C et al. (2010) Immunohistochemical expression of HER1, HER3 and HER4 in HER-2 positive breast cancer patients treated with trastuzumab-containing neoadjuvant chemotherapy. J Surg Oncol 101: 222–227

    PubMed  CAS  Google Scholar 

  16. Narayan M, Wilken JA, Harris LN et al. (2009) Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69: 2191–2194

    Article  PubMed  CAS  Google Scholar 

  17. Sergina N V, Rausch M, Wang D et al. (2007) Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445: 437–441

    Article  PubMed  CAS  Google Scholar 

  18. Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97: 453–457

    Article  PubMed  CAS  Google Scholar 

  19. Sartor CI, Zhou H, Kozlowska E et al. (2001) Her4 mediates ligand-dependent antiproliferative and differentiation responses in human breast cancer cells. Mol Cell Biol 21: 4265–4275

    Article  PubMed  CAS  Google Scholar 

  20. Koutras AK, Kalogeras KT, Dimopoulos MA et al. (2008) Evaluation of the prognostic and predictive value of HER family mRNA expression in high-risk early breast cancer. Br J Cancer 99: 1775–1778.

    Article  PubMed  CAS  Google Scholar 

  21. Nagata Y, Lan KH, Zhou X et al. (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer cell 6: 117–127

    Article  PubMed  CAS  Google Scholar 

  22. Lane HA, Beuvink I, Motoyama AB et al. (2001) Modulation of p27/cdk2 complex formation through 4-D5 mediated inhibition of HER2 receptor signaling. Ann Oncol 12 (supl 1): S21–22

    Article  Google Scholar 

  23. Esteva FJ, Valero V, Booser D et al. (2002) Phase II study of weekly docetaxel and trastuzumab for patients with HER-2 overexpressing metastatic breast cancer. J Clin Oncol 20: 1800–1808

    Article  PubMed  CAS  Google Scholar 

  24. Esteva FJ, Guo H, Zhang S et al. (2010) PTEN, PIK3CA, p-AKT and p-p70S6K status. Association with trastuzumab response and survival in patients with HER2-positive metastatic breast cancer. Am J Pathol 177: 1647–1656

    Article  PubMed  CAS  Google Scholar 

  25. Fornier MN, Seidman AD, Schwartz MK et al. (2005) Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry anf fluorescence in situ hybridation and with response rate. Ann Oncol 16: 234–239

    Article  PubMed  CAS  Google Scholar 

  26. Gennari R, Menard S, Fagnoni F et al. (2004) Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10: 5650–5655

    Article  PubMed  CAS  Google Scholar 

  27. Marty M, Cognetti F, Maraninchi D et al. (2005) Randomized phase II trial the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23: 4265–4274

    Article  PubMed  CAS  Google Scholar 

  28. Dawood S, Broglio K, Buzdar AU et al. (2010) Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. J Clin Oncol 28: 92–98

    Article  PubMed  CAS  Google Scholar 

  29. Buzdar AU, Valero V, Ibrahim NK et al. (2007) Neoadjuvant therapy with paclitaxel followed by 5-Fu, epirubicin and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen. Clin Cancer Res 13: 228–233

    Article  PubMed  CAS  Google Scholar 

  30. Lazaridis G, Pentheroudakis G, Pavlidis N (2008) Integrating trastuzumab in the neoadjuvant treatment of primary breast cancer: accumulating evidence of efficacy, synergy and safety. Crit Rev Oncol Hematol 66: 31–41

    Article  PubMed  Google Scholar 

  31. Pohlamnn PR, Mayer IA, Mernaugh R (2009) Resistance to trastuzumab in breast cancer. Clin Cancer Res 15: 7479–7491

    Article  Google Scholar 

  32. Burris HA, 3rd (2004) Dual kinase inhibition in the treatment of breast cancer: initial experience with EGF-R/ErbB-2 inhibitor lapatinib. Oncologist 9 (supl 3): 10–15

    Article  PubMed  CAS  Google Scholar 

  33. Medina PJ, Goodin S (2008) Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther 30: 1426–1447

    Article  PubMed  CAS  Google Scholar 

  34. Cameron D, Casey M, Oliva C et al. (2010) Lapatinib plus capecitabine in women with HER-2 positive advanced breast cancer: final survival analysis of a phase III randomized trial. The Oncologist 15: 924–934

    Article  PubMed  CAS  Google Scholar 

  35. Johnston S, Pippen JR, Pivot X et al. (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27: 5538–5546

    Article  PubMed  CAS  Google Scholar 

  36. Cameron D, Casey M, Press M et al. (2008) A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res 112: 533–543

    Article  CAS  Google Scholar 

  37. Di Leo A, Gomez HL, Aziz Z et al. (2008) Phase III, double-blind, randomized study comparing laptinib plus paclitaxel with placebo plus paclitaxel as first line treatment for metastatic breast cancer. J Clin Oncol 26: 5544–5552

    Article  PubMed  Google Scholar 

  38. Konecny GE, Egram MD, Venkatesan N et al. (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–1639

    Article  PubMed  CAS  Google Scholar 

  39. Blackwell KL, Burstein HJ, Storniolo AM et al. (2010) Randimized study of lapatinib alone or in combination with trastuzumab in women with hER2 positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 28: 1124–1130

    Article  PubMed  CAS  Google Scholar 

  40. Agus DB, Akita RW, Fox WD et al. (2002) Targeting ligand-ativated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2: 127–137

    Article  PubMed  CAS  Google Scholar 

  41. Adams C W, Allison DE, Flagella K et al. (2006) Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother 55: 717–727

    Article  PubMed  CAS  Google Scholar 

  42. Baselga J, Gelmon KA, Verma S et al. (2010) Phase II of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol 28: 1138–1144

    Article  PubMed  CAS  Google Scholar 

  43. Baselga J, Cortes J, Fumoleau P et al. (2010) Pertuzumab and trastuzumab: re-responses to 2 biological agents in patients with HER2-positive breast canc3Ker which had previously progressed during therapy with each agent given separately: a new biological and clinical observation. SABCS, Abstract 5114

    Google Scholar 

  44. Chan SK, Hill M, Gullick WJ (2006) The role of epidermal growth factor receptor in breast cancer. J Mammary Gland Biol Neoplasia 11: 3–11

    Article  PubMed  Google Scholar 

  45. Siziopikou K P, Cobleigh M (2007) The basal subtype of breast carcinomas may represent the group of breast tumors that could benefit from EGF-R targeted therapies. The Breast 16: 104–107

    Article  PubMed  Google Scholar 

  46. O’Shaughnessy J, Weckstein D, Vukelja SJ et al. (2007) Premilinary results od a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer. SABCS, Abstract 308

    Google Scholar 

  47. Carey LA, Rugo HS, Marcom PK et al. (2008) TBCRC 001: EGFR inhibition with cetuximab added to carboplatin in metastatic triple negative (basal-like) breast cancer. J Clin Oncol 26(15S): A1009

    Google Scholar 

  48. Paik S, Kim C, Wolmark N (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358: 1409–1411

    Article  PubMed  CAS  Google Scholar 

  49. MuKohara T (2010) Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Cancer Science 102: 1–8

    Article  PubMed  Google Scholar 

  50. Molina MA, Saez R, Ramsey EE et al. (2002) NH(2)-terminal truncated HER-2 protein but not full-lengh receptor is associated xith nodal metastasis in human breast cancer. Clin Cancer Res 8: 347–353

    PubMed  CAS  Google Scholar 

  51. Scaltriti M, Rojo F, Ocana A et al. (2007) Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. JNCI 99: 628–638

    PubMed  CAS  Google Scholar 

  52. Scaltriti M, Chandarlapaty S, Prudkin L et al. (2010) Clinical benefit of lapatinib-based therapy in patients with Human Epidermal Growth Factor Receptor-2 positive breast tumors coexpressing the truncated p95HER2 receptor. Clin Cancer Res 16:2688–2695

    Article  PubMed  CAS  Google Scholar 

  53. Palyi-Krekk Z, Barok M, Isola J et al. (2007) Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. Eur J Cancer 43: 2423–2433

    Article  PubMed  CAS  Google Scholar 

  54. Nagy P, Friedlander E, Tanner M et al. (2005) Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res 65: 473–482

    PubMed  CAS  Google Scholar 

  55. Pandolfi PP (2004) Breast cancer-loss of PTEN predicts resistance to treatment. N Engl J Med 351: 2337–2338

    Article  PubMed  CAS  Google Scholar 

  56. Saal LH, Holm K, Maurer M et al. (2005) PIK3CA mutations correlate with hormone receptors, node metastasis and HER2 and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559

    Article  PubMed  CAS  Google Scholar 

  57. Perez-Tenorio G, Alkhori L, Olsson B et al. (2007) PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13: 3577–3584

    Article  PubMed  CAS  Google Scholar 

  58. Berns K, Horlings HM, Hennessy BT et al. (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12: 395–402

    Article  PubMed  CAS  Google Scholar 

  59. Chan CT, Metz MZ, Kane SE et al. (2005) Differential sensitivities of tradtuzumab resistant human breast cancer cells to phosphoinositide-3 kinase (PI3-K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res and Treat 91: 187–201

    Article  CAS  Google Scholar 

  60. Gori S, Sidoni A, Colozza M et al. (2009) EGFR, pMAPK, pAKT and PTEN status by immunohistochemistry: correlation with clinical outcome in HER2-positive metastatic breast cancer patients treated with traastuzumab. Ann Oncol 20: 648–654

    Article  PubMed  CAS  Google Scholar 

  61. Hsieh AC, Ruggero D (2010) Targeting eIF4E in cancer. Clin Cancer Res 16: 4914–4920

    Article  PubMed  CAS  Google Scholar 

  62. Lu Y, Zi X, Pollak M (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth inhibitory activity of trastuzumab on SKBR3 breast cancer cells. Int J Cancer 108: 334–341

    Article  PubMed  CAS  Google Scholar 

  63. Harris LN, You F, Schnitt SJ et al. (2007) Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2-positive early breast cancer. Clin Cancer Res 13: 1198–1207

    Article  PubMed  CAS  Google Scholar 

  64. Kostler WJ, Hudelist G, Rabitsch W et al. (2006) Insulin like growth factor-I receptor (IGF-1R) expression does not predict for resistance to trastuzumab-based treatment in patients with HER-2 overexpressing metastatic breast cancer. J Cancer Res Clin Oncol 132: 9–18

    Article  PubMed  Google Scholar 

  65. Robinson AG, turbin D, Thomson T et al. (2006) Molecular prdictive factors in patients receiving trastuzumab-based chemotherapy for metastatic disease. Clin Breast Cancer 7: 254–261

    Article  PubMed  CAS  Google Scholar 

  66. Cho S, Mason K, Ramyar KX et al. (2003) Structure of the extracellular region of HER2 alone and in complex with the herceptin fab. Nature 421: 756–760

    Article  PubMed  CAS  Google Scholar 

  67. Hudelist G, Kostler W, Czerwenka K et al. (2006) HER2/neu and EGFR tyrosine kinase activation predict the efficacy of trastuzumab-based chemotherapy in patients with metastatic breast cancer. Int J Cancer 118: 1126–1134

    Article  PubMed  CAS  Google Scholar 

  68. Giuliani R, Durbecq V, Di Leo A et al. (2007) Phosphorylated HER-2 tyrosine kinase and HER2/neu gene amplification as predictive factors of response to trastuzumab in patients with HER-2 overexpressing metastatic breast cancer. Eur J Cancer 43:725–735

    Article  PubMed  CAS  Google Scholar 

  69. Musolino A, Naldi N, Bortesi B et al. (2008) Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26: 1789–1796

    Article  PubMed  CAS  Google Scholar 

  70. Kruser TJ, Wheeler DL (2010) Mechanisms of resistance to HER family targeting antibodies. Exp Cell Res 316: 1083–1100

    Article  PubMed  CAS  Google Scholar 

  71. Tanner M, Kapanen AI, Junttila T et al. (2004) Characterization of a novel cell line established from a patient with Herceptin-resistant breast cancer. Mol Cancer Ther 3: 1585–1592

    PubMed  CAS  Google Scholar 

  72. Johnston S, Trudeau M, Kaufman B et al. (2008) Phase II study of predictive biomarker profiles for response targeting human epidermal growth factor receptor-2 in advanced inflammatory breast cancer with lapatinib monotherapy. J Clin Oncol 26: 1066–1072

    Article  PubMed  CAS  Google Scholar 

  73. Blackwell KL, Burstein H, Pegram M et al. (2005) Determining relevant biomarkers from tissue and serum that may predict response to single agent lapatinib in trastuzumab refractory metastatic breast cancer. ASCO, Abstract 3004

    Google Scholar 

  74. Eichhorn PJ, Gili M, Scaltriti M et al. (2008) Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/PI3K inhibitor NVP-BEZ235 Cancer Res 68: 9221–9230

    Article  PubMed  CAS  Google Scholar 

  75. Kataoka Y, Mukohara T, Shimada H et al. (2010) Association between gain-of-function mutations in PI3KCA and resistance to HER2-targeted agents in HER-2 amplified breast cancer cell lines. Ann Oncol 21: 255–262

    Article  PubMed  CAS  Google Scholar 

  76. Xiang B, Chatti K, Qiu H et al. (2008) Brk is coamplified with HER2 to promote proliferation in breast cancer. PNAS 105: 12463–12468

    Article  PubMed  CAS  Google Scholar 

  77. Xia W, Bacus S, Hegde P et al. (2006) A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. PNAS 103: 7795–7800

    Article  PubMed  CAS  Google Scholar 

  78. Kitazaki T, Oka M, Nakamura Y et al. (2005) Gefinitib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49: 337–343

    Article  PubMed  Google Scholar 

  79. Ozvegy-Laczka C, Cserepes J, Elkind NB et al. (2005) Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resist. Update 8:15–26

    Article  Google Scholar 

  80. Polli J W, Humphreys JE, Harmon KA et al. (2008) The role of efflux and uptake trasnporters in lapatinib disposition and drug interactions. Drug Metab Dispos 36:695–701

    Article  PubMed  CAS  Google Scholar 

  81. Vogel CL, Burris HA, Limentani S et al. (2009) A phase II study of trastuzumab-DM1 (T-DM1), a HER2 antobody drug conjugate (ADC), in patients with HER2+ metastatic breast cancer. J Clin Oncol 27: A1017

    Google Scholar 

  82. Perez EA, Dirix L, Kocsis J et al. (2010) Efficacy and sefety of trastuzumab-DM1 versus trastuzumab plus docetaxel in HER2-positive metastatic breast cancer patients with no prior chemotherapy for metastatic disease: preliminary results of a randomized, multicenter, open-label phase 2 study. ESMO. Abstract LBA3

    Google Scholar 

  83. Baxevanis CN, Voutsas IF, Gritzapis AD et al. (2010) HER-2/neu as a target for cancer vaccines. Ummunotherapy 2: 213–226

    Article  CAS  Google Scholar 

  84. Dalenc F, Campone M, Hupperets P et al. (2010) Everolimus in combination with weekly paclitaxel and trastuzumab in patients with HER-2 overexpressing metastatic breast cancer with prior resistance to trastuzumab and taxanes: a multicenter phase II clinical trial. ASCO, Abstract 1013

    Google Scholar 

  85. Campone M, Juin P, André F et al. (2011) Resistance to HER2 inhibitors: is addition better than substitution? Rationale for the hypothetical concept of drug sedimentation. Crit Rev in Oncol and Hematol 78: 195–205

    Article  Google Scholar 

  86. Sharma S V, Settleman J (2007) Oncogene addiction: setting the stage for moleculary targeted therapy. Genes and Develop 21: 3214–3231

    Article  CAS  Google Scholar 

  87. Solimini NL, Lou J, Elledge SJ (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130: 986–988

    Article  PubMed  CAS  Google Scholar 

  88. Oude Munnink TH, Nagengast WB, Brouwers AH et al. (2009) Molecular imaging of breast cancer. Breast 18 (suppl 3): S66–S73

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this paper

Cite this paper

Dalenc, F., Bergé, Y., Roché, H. (2012). Comment augmenter la performance des médicaments anti-HER?. In: Cancer du sein. Springer, Paris. https://doi.org/10.1007/978-2-8178-0245-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0245-9_34

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0244-2

  • Online ISBN: 978-2-8178-0245-9

Publish with us

Policies and ethics