Skip to main content

La nutrition lors de la période postnatale précoce détermine la fonction somatotrope chez la souris

  • Chapter
  • 156 Accesses

Résumé

Selon un nombre croissant de données, plusieurs pathologies humaines auraient une origine développementale, en particulier les carences nutritionnelles intrautérines ou postnatales : les modifications nutritionnelles se traduisent en effet rapidement par des altérations de la croissance somatique. Toutefois, alors qu’un retard de croissance intra-utérin (RCIU) est souvent corrigé après la naissance, la récupération est limitée en cas de restriction alimentaire pendant la période suivant immédiatement la naissance. Nous souhaitions donc déterminer si la nutrition (sous-nutrition ou suralimentation) en postnatal immédiate modifiait ou non la plasticité de la croissance par le biais d’un contrôle développemental de l’axe hormonal somatotrope. Nous avons redistribué des portées de souris pour induire des modifications de la nutrition au cours des premiers jours de vie, et étudié la régulation endocrine de la croissance et le développement de phénotypes de maladies spécifiques chez les souris adultes. Nous avons démontré que la sous-alimentation pendant la période postnatale immédiate retarde la croissance, alors que la suralimentation l’accélère. Dans les deux cas, l’altération de la taille finale a été permanente. Nous avons observé des altérations coordonnées de la GH hypophysaire, du taux d’IGF-I et d’ALS, ainsi que de l’expression du gène de la GH-RH (ou somatolibérine) hypothalamique pendant le développement postnatal. Ces modifications concordaient avec les phénotypes observés. Les altérations de l’axe somatotrope ont persisté à l’âge adulte. Bien que limitées à la période postnatale immédiate, la sous-alimentation et la suralimentation ont entraîné par la suite une réduction de la tolérance au glucose. Ces anomalies métaboliques correspondaient à une sécrétion insuffi sante d’insuline chez les souris sous-alimentées et à une résistance à l’insuline chez les souris suralimentées. En outre, une augmentation de la pression artérielle suggérant une détérioration vasculaire a été observée dans les deux groupes de souris (sous-alimentées et suralimentées). Nos observations indiquent qu’il existe un lien signifi catif entre le régime nutritionnel immédiatement postnatal, le développement somatotrope et certaines pathologies d’apparition tardive chez la souris. Nous suggérons que l’IGF-I, ainsi que le font d’autres hormones comme la leptine, pourrait jouer un rôle en modulant la stimulation hypothalamique de la fonction somatotrope pendant son développement.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Gluckman PD, Hanson MA (2004) The developmental origins of the metabolic syndrome. Trends Endocrinol Metab 15: 183–187

    Article  CAS  PubMed  Google Scholar 

  2. Bateson P, Barker D, Clutton-Brock T et al. (2004) Developmental plasticity and human health. Nature 430: 419–421

    Article  CAS  PubMed  Google Scholar 

  3. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85: 571–633

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJ, Osmond C, Golding J et al. (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298: 564–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gicquel C, El-Osta A, Le Bouc Y (2008) Epigenetic regulation and fetal programming. Best Pract Res Clin Endocrinol Metab 22: 1–16

    Article  CAS  PubMed  Google Scholar 

  6. Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305: 1733–1736

    Article  CAS  PubMed  Google Scholar 

  7. Gluckman PD, Hanson MA, Beedle AS (2007) Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol 19: 1–19

    Article  PubMed  Google Scholar 

  8. Jaquet D, Collin D, Levy-Marchal C et al. (2004) Adult height distribution in subjects born small for gestational age. Horm Res 62: 92–96

    Article  CAS  PubMed  Google Scholar 

  9. Karlberg JP, Albertsson-Wikland K, Kwan EY et al. (1997) The timing of early postnatal catch-up growth in normal, full-term infants born short for gestational age. Horm Res 48(Suppl 1): 17–24

    Article  CAS  PubMed  Google Scholar 

  10. Lucas A (1998) Programming by early nutrition: an experimental approach. J Nutr 128 (Suppl): 401S–406S

    CAS  PubMed  Google Scholar 

  11. Huizinga CT, Oudejans CB, Steiner RA et al. (2000) Effects of intrauterine and early postnatal growth restriction on hypothalamic somatostatin gene expression in the rat. Pediatr Res 48: 815–820

    Article  CAS  PubMed  Google Scholar 

  12. Woodall SM, Breier BH, Johnston BM et al. (1996) A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol 150: 231–242

    Article  CAS  PubMed  Google Scholar 

  13. Rogers I, Emmett P, Gunnell D et al. (2006) Milk as a food for growth? The insulin-like growth factors link. Public Health Nutr 9: 359–368

    Article  PubMed  Google Scholar 

  14. Houdijk ME, Engelbregt MT, Popp-Snijders C et al. (2003) Long-term effects of early postnatal food restriction on growth hormone secretion in rats. JPEN J Parenter Enteral Nutr 27: 260–267

    Article  CAS  PubMed  Google Scholar 

  15. Huizinga CT, Oudejans CB, Delemarre-Van de Waal HA (2001) Decreased galanin mRNA levels in growth hormone-releasing hormone neurons after perinatally induced growth retardation. J Endocrinol 170: 521–528

    Article  CAS  PubMed  Google Scholar 

  16. Huizinga CT, Oudejans CB, Delemarre-van de Waal HA (2001) Persistent changes in somatostatin and neuropeptide Y mRNA levels but not in growth hormone releasing hormone mRNA levels in adult rats after intrauterine growth retardation. J Endocrinol 168: 273–281

    Article  CAS  PubMed  Google Scholar 

  17. Holzenberger M, Dupont J, Ducos B, et al. (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421: 182–187

    Article  CAS  PubMed  Google Scholar 

  18. Fiorotto ML, Burrin DG, Perez M et al. (1991) Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters. Am J Physiol 260(6 Pt 2): R1104–R1113

    CAS  PubMed  Google Scholar 

  19. Ueki K, Okada T, Hu J et al. (2006) Total insulin and IGF-I resistance in pancreatic cells causes overt diabetes. Nat Genet 38: 583–588

    Article  CAS  PubMed  Google Scholar 

  20. Bateman JM, McNeill H (2004) Temporal control of differentiation by the insulin receptor/tor pathway in Drosophila. Cell 119: 87–96

    CAS  Google Scholar 

  21. Huby AC, Vandermeersch S, Verpönt MC, et al. (2007) ATI receptor blockade reverses renal vascular inflammation, glomerulosclerosis and proteinuria in hypertensive transgenic mice overexpressing renin. J Am Soc Nephrol 18: 398 (Abstract SA-255)

    Google Scholar 

  22. Marissal-Arvy N, Gaumont A, Langlois A etal. (2007) Strain differences in hypothalamic pituitary adrenocortical axis function and adipogenic effects of corticosterone in rats. J Endocrinol 195: 473–484

    Article  CAS  PubMed  Google Scholar 

  23. Plagge A, Gordon E, Dean W (2004) The imprinted signaling protein XL as is required for postnatal adaptation to feeding. Nat Genet 36: 818–826

    Article  CAS  PubMed  Google Scholar 

  24. de Vries A, Holmes MC, Heijnis A et al. (2007) Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 117: 1058–1067

    Article  PubMed Central  PubMed  Google Scholar 

  25. Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Public Health Nutr 4: 611–624

    Article  CAS  PubMed  Google Scholar 

  26. Holzenberger M, Hamard G, Zaoui R et al. (2001) Experimental IGF-I receptor deficiency generates a sexually dimorphic pattern of organ-specific growth deficits in mice, affecting fat tissue in particular. Endocrinology 142: 4469–4478

    Article  CAS  PubMed  Google Scholar 

  27. Holzenberger M, Leneuve P, Hamard G et al. (2000) A targeted partial invalidation of the insulin-like growth factor I receptor gene in mice causes a postnatal growth deficit. Endocrinology 141: 2557–2566

    CAS  PubMed  Google Scholar 

  28. Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15: 80–101

    CAS  PubMed  Google Scholar 

  29. Baxter RC (1997) The binding protein’s binding protein-clinical applications of acid labile subunit (ALS) measurement. J Clin Endocrinol Metab 82: 3941–3943

    CAS  PubMed  Google Scholar 

  30. Fowden AL (2003) The insulin-like growth factors and feto-placental growth. Placenta 24: 803–812

    Article  CAS  PubMed  Google Scholar 

  31. Cella SG, Locatelli V, Mennini T et al. (1990) Deprivation of growth hormone-releasing hormone early in the rat’s neonatal life permanently affects somatotropic function. Endocrinology 127: 1625–1634

    Article  CAS  PubMed  Google Scholar 

  32. Wehrenberg WB, Voltz DM, Cella SG (1992) Longterm failure of compensatory growth in rats following acute neonatal passive immunization against growth hormone-releasing hormone. Neuroendocrinology 56: 509–515

    Article  CAS  PubMed  Google Scholar 

  33. Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304: 108–110

    Article  CAS  PubMed  Google Scholar 

  34. Miralles O, Sanchez J, Palou A et al. (2006) Aphysiological role of breast milk leptin in body weight control in developing infants. Obesity (Silver Spring) 14: 1371–1377

    Article  CAS  Google Scholar 

  35. Luque RM, Huang ZH, Shah B et al. (2007) Effects of leptin replacement on hypothalamic-pituitary growth hormone axis function and circulating ghrelin levels in ob/ob mice. Am J Physiol Endocrinol Metab 292: E891–E899

    Article  CAS  PubMed  Google Scholar 

  36. Konner AC, Janoschek R, Plum L et al. (2007) Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 5: 438–449

    Article  PubMed  Google Scholar 

  37. Davidowa H, Plagemann A (2007) Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. Neuroreport 18: 521–524

    Article  CAS  PubMed  Google Scholar 

  38. Okada T, Liew CW, Hu J et al. (2007) Insulin receptors in β-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci USA 104: 8977–8982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Colombani J, Bianchini L, Layalle S et al. (2005) Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310: 667–670

    CAS  Google Scholar 

  40. Colombani J, Raisin S, Pantalacci S et al. (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114: 739–749

    Article  CAS  PubMed  Google Scholar 

  41. Leopold P (2004) Neuronal differentiation: TORand insulin receptor pathways set the tempo. Cell 119: 4–5

    Article  CAS  PubMed  Google Scholar 

  42. Tolle V, Zizzari P, Tomasetto C et al. (2001) In vivo and in vitro effects of ghrelin/ motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology 73: 54–61

    Article  CAS  PubMed  Google Scholar 

  43. Nishi Y, Hiejima H, Mifune H et al. (2005) Developmental changes in the pattern of ghrelin’s acyl modification and the levels of acyl-modified ghrelins in murine stomach. Endocrinology 146: 2709–2715

    Article  CAS  PubMed  Google Scholar 

  44. Hill DJ, Strutt B, Arany E et al. (2000) Increased and persistent circulating insulin-like growth factor II in neonatal transgenic mice suppresses developmental apoptosis in the pancreatic islets. Endocrinology 141: 1151–1157

    CAS  PubMed  Google Scholar 

  45. Ezzahir N, Alberti C, Deghmoun S et al. (2005) Time course of catch-up in adiposity influences adult anthropometry in individuals who were born small for gestational age. Pediatr Res 58: 243–247

    Article  PubMed  Google Scholar 

  46. Jaquet D, Deghmoun S, Chevenne D et al. (2005) Dynamic change in adiposity from fetal to postnatal life is involved in the metabolic syndrome associated with reduced fetal growth. Diabetologia 48: 849–855

    Article  CAS  PubMed  Google Scholar 

  47. Brawley L, Itoh S, Torrens C et al. (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects

    Google Scholar 

  48. Cleal JK, Poore KR, Boullin JP et al. (2007) Mismatched pre-and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proc Natl Acad Sci USA 104: 9529–9533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Khorram O, Momeni M, Desai M et al. (2007) Nutrient restriction in utero induces remodeling of the vascular extracellular matrix in rat offspring. Reprod Sci 14: 73–80

    Article  CAS  PubMed  Google Scholar 

  50. Vickers MH, Ikenasio BA, Breier BH (2002) Adult growth hormone treatment reduces hypertension and obesity induced by an adverse prenatal environment. J Endocrinol 175: 615–623

    Article  CAS  PubMed  Google Scholar 

  51. Cousin SP, Hugl SR, Myers Jr MG et al. (1999) Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochem J 344 (Pt 3): 649–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Holdaway IM, Rajasoorya RC, Gamble GD (2004) Factors influencing mortality in acromegaly. J Clin Endocrinol Metab 89: 667–674

    Article  CAS  PubMed  Google Scholar 

  53. Izhar U, Hasdai D, Richardson DM et al. (2000) Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro. Coron Artery Dis 11: 69–76

    Article  CAS  PubMed  Google Scholar 

  54. Nilsson AB, Nitescu N, Chen Y et al. (2000) IGF-I treatment attenuates renal abnormalities induced by neonatal ACE inhibition. Am J Physiol Regul Integr Comp Physiol 279: R1050–R1060

    CAS  PubMed  Google Scholar 

  55. Vickers MH, Ikenasio BA, Breier BH (2001) IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology 142: 3964–3973

    Article  CAS  PubMed  Google Scholar 

  56. Ozanne SE, Hales CN (2004) Lifespan: catch-up growth and obesity in male mice. Nature 427: 411–412

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Kappeler, L. et al. (2012). La nutrition lors de la période postnatale précoce détermine la fonction somatotrope chez la souris. In: Le Bouc, Y., Tauber, M. (eds) Aspects biologiques, moléculaires et cliniques de l’axe GH/IGF-I. Springer, Paris. https://doi.org/10.1007/978-2-8178-0196-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0196-4_11

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0195-7

  • Online ISBN: 978-2-8178-0196-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics