Skip to main content

Résumé

Durant les vingt dernières années, les outils d’imagerie fonctionnelle cérébrale se sont largement répandus, en particulier grâce à l’imagerie par résonance magnétique fonctionnelle (IRMf) qui est maintenant facilement accessible. De nombreuses études utilisent ces outils afi n d’explorer la plasticité cérébrale postlésionnelle ou le mécanisme d’action d’une prise en charge rééducative. Alors qu’il est techniquement possible de réaliser un examen d’imagerie fonctionnelle cérébrale dans les suites d’un accident vasculaire cérébral (AVC), pourquoi cette pratique ne s’est-elle pas encore imposée en clinique courante pour étudier le potentiel de récupération d’un patient ou choisir le protocole de rééducation le plus adapté ?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Jorgensen HS, Nakayama H, Raaschou HO, et al. (1995) Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study. Arch Phys Med Rehabil 76: 406–12.

    Article  CAS  PubMed  Google Scholar 

  2. Johansen-Berg H, Rushworth MF, Bogdanovic MD, et al. (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 99: 14518–23

    Article  CAS  PubMed  Google Scholar 

  3. Chollet F, DiPiero V, Wise RJ, et al. (1991) The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 29: 63–71

    Article  CAS  PubMed  Google Scholar 

  4. Loubinoux I, Carel C, Pariente J, et al. (2003) Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage 20: 2166–80

    Article  PubMed  Google Scholar 

  5. Tombari D, Loubinoux I, Pariente J, et al. (2004) A longitudinal fMRI study: in recovering and then in clinically stable sub-cortical stroke patients. Neuroimage 23: 827–39

    Article  PubMed  Google Scholar 

  6. Carey JR, Kimberley TJ, Lewis SM, et al. (2002) Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain 125: 773–88

    Article  PubMed  Google Scholar 

  7. Ward NS, Brown MM, Thompson AJ, Frackowiak RS (2004) The influence of time after stroke on brain activations during a motor task. Ann Neurol 55: 829–34

    Article  PubMed  Google Scholar 

  8. Rossini PM, Caltagirone C, Castriota-Scanderbeg A, et al. (1998) Hand motor cortical area reorganization in stroke: a study with fMRI, MEG and TCS maps. Neuroreport 9: 2141–6

    Article  CAS  PubMed  Google Scholar 

  9. Blank SC, Bird H, Turkheimer F, Wise RJ (2003) Speech production after stroke: the role of the right pars opercularis. Ann Neurol 54: 310–20

    Article  PubMed  Google Scholar 

  10. Thulborn KR, Carpenter PA, Just MA (1999) Plasticity of language-related brain function during recovery from stroke. Stroke 30: 749–54

    CAS  PubMed  Google Scholar 

  11. Weiller C, Isensee C, Rijntjes M, et al. (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37: 723–32

    Article  CAS  PubMed  Google Scholar 

  12. Leff A, Crinion J, Scott S, et al. (2002) A physiological change in the homotopic cortex following left posterior temporal lobe infarction. Ann Neurol 51: 553–8

    Article  PubMed  Google Scholar 

  13. Sharp DJ, Scott SK, Wise RJ (2004) Retrieving meaning after temporal lobe infarction: the role of the basal language area. Ann Neurol 56: 836–46

    Article  PubMed  Google Scholar 

  14. Fernandez B, Cardebat D, Demonet JF, et al. (2004) Functional MRI follow-up study of language processes in healthy subjects and during recovery in a case of aphasia. Stroke 35: 2171–6

    Article  PubMed  Google Scholar 

  15. Heiss WD, Kessler J, Thiel A, et al. (1999) Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Ann Neurol 45: 430–8

    Article  CAS  PubMed  Google Scholar 

  16. Rosen HJ, Petersen SE, Linenweber MR, et al. (2000) Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology 55: 1883–94

    CAS  PubMed  Google Scholar 

  17. Cardebat D, Demonet JF, De Boissezon X, et al. (2003) Behavioral and neurofunctional changes over time in healthy and aphasic subjects: a PET Language Activation Study. Stroke 34: 2900–6

    Article  PubMed  Google Scholar 

  18. de Boissezon X, Demonet JF, Puel M, et al. (2005) Subcortical aphasia: a longitudinal PET study. Stroke 36: 1467–73

    Article  PubMed  Google Scholar 

  19. Saur D, Lange R, Baumgaertner A, et al. (2006) Dynamics of language reorganization after stroke. Brain 129: 1371–84

    Article  PubMed  Google Scholar 

  20. Ward NS, Newton JM, Swayne OB, et al. (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25: 1865–73

    Article  PubMed  Google Scholar 

  21. Warburton E, Price CJ, Swinburn K, Wise RJ (1999) Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry 66: 155–61

    Article  CAS  PubMed  Google Scholar 

  22. Stinear CM, Barber PA, Smale PR, et al. (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130: 170–80

    Article  PubMed  Google Scholar 

  23. Greener J, Enderby P, Whurr R (2000) Speech and language therapy for aphasia following stroke. Cochrane Database Syst Rev CD000425

    Google Scholar 

  24. Albert ML (1998) Treatment of aphasia. Arch Neurol 55: 1417–9

    Article  CAS  PubMed  Google Scholar 

  25. Robey RR (1994) The effi cacy of treatment for aphasic persons: a meta-analysis. Brain Lang 47: 582–608

    Article  CAS  PubMed  Google Scholar 

  26. Belin P, Van Eeckhout P, Zilbovicius M, et al. (1996) Recovery from nonfl uent aphasia after melodic intonation therapy: a PET study. Neurology 47: 1504–11

    CAS  PubMed  Google Scholar 

  27. Musso M, Weiller C, Kiebel S, et al. (1999) Training-induced brain plasticity in aphasia. Brain 122 ( Pt 9): 1781–90

    Article  PubMed  Google Scholar 

  28. Leger A, Demonet JF, Ruff S, et al. (2002) Neural substrates of spoken language rehabilitation in an aphasic patient: an fMRI study. Neuroimage 17: 174–83

    Article  CAS  PubMed  Google Scholar 

  29. Blasi V, Young AC, Tansy AP, et al. (2002) Word retrieval learning modulates right frontal cortex in patients with left frontal damage. Neuron 36: 159–70

    Article  CAS  PubMed  Google Scholar 

  30. Raichle ME, Fiez JA, Videen TO, et al. (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex 4: 8–26

    Article  CAS  PubMed  Google Scholar 

  31. Peck KK, Moore AB, Crosson BA, et al. (2004) Functional magnetic resonance imaging before and after aphasia therapy: shifts in hemodynamic time to peak during an overt language task. Stroke 35: 554–9

    Article  PubMed  Google Scholar 

  32. Crosson B, Moore AB, Gopinath K, et al. (2005) Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. J Cogn Neurosci 17: 392–406

    Article  PubMed  Google Scholar 

  33. Raboyeau G, De Boissezon X, Marie N, et al. (2008) Right hemisphere activation in recovery from aphasia: lesion effect or function recruitment? Neurology 70: 290–8

    Article  CAS  PubMed  Google Scholar 

  34. Hummel FC, Voller B, Celnik P, et al. (2006) Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 7: 73

    Article  PubMed  Google Scholar 

  35. Mansur CG, Fregni F, Boggio PS, et al. (2005) A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 64: 1802–4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag France, Paris

About this chapter

Cite this chapter

de Boissezon, X., Castel-Lacanal, É., Demonet, JF., Chollet, F., Marque, P. (2010). Mécanismes cérébraux de la rééducation: apport de l’imagerie fonctionnelle. In: Accident vasculaire cérébral et médecine physique et de réadaptation: Actualités en 2010. Springer, Paris. https://doi.org/10.1007/978-2-8178-0109-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0109-4_5

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0108-7

  • Online ISBN: 978-2-8178-0109-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics