Skip to main content
  • 894 Accesses

Résumé

L’évaluation du statut folliculaire ou réserve ovarienne constitue le préambule indispensable à toute prise en charge en assistance médicale à la procréation, permettant de guider la prise en charge thérapeutique. En eff et, cette réserve ovarienne, ou âge fonctionnel ovarien, inclut à la fois un aspect quantitatif, caractérisé par la taille du pool folliculaire restant, et un aspect qualitatif relatif aux ovocytes. Le déclin de cette réserve, étroitement corrélé au vieillissement ovarien, est responsable d’une baisse de la fertilité par réduction du nombre des follicules primordiaux et altération de la qualité ovocytaire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Gougeon A, Ecochard R, Thalabard JC (1994) Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod 50:653–663

    PubMed  CAS  Google Scholar 

  2. Fédération CECOS, Schwartz D, Mayaux MJ (1982) Female fecundity as a function of age. N Engl J Med 306:404–406

    Google Scholar 

  3. Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17:121–155

    PubMed  CAS  Google Scholar 

  4. Legro RS, Wong IL, Paulson RJ, Lobo RA, Sauer MV (1995) Recipient’s age does not adversely affect pregnancy outcome after oocyte donation. Am J Obstet Gynecol 172:96–100

    PubMed  CAS  Google Scholar 

  5. Block E (1952) Quantitative morphological investigations of the follicular system in women: variations at different ages. Acta Anat 14:108–123

    PubMed  CAS  Google Scholar 

  6. van Noord-Zaadstra BM, Looman CW, Alsbach H, Habbema JD, te Velde ER, Karbaat J (1991) Delaying childbearing: effect of age on fecundity and outcome of pregnancy. Br Med J 302:1361–1365

    Google Scholar 

  7. Wood JW (1989) Fecundity and natural fertility in humans. In: Milligen SR, ed. Oxford Reviews of Reproductive Biology. Oxford, Oxford University Press, Volume 2:61–109.

    Google Scholar 

  8. Templeton A, Morris JK, Parslow W (1996) Factors that affect outcome of in-vitro fertilisation treatment. Lancet 348:1402–1406

    PubMed  CAS  Google Scholar 

  9. Cameron IT, O’Shea FC, Rolland JM, Hughes EG, de Kretser DM, Healy DL (1988) Occult ovarian failure: a syndrome of infertility, regular menses, and elevated follicle-stimulating hormone concentrations. J Clin Endocrinol Metab 67:1190–1194

    PubMed  CAS  Google Scholar 

  10. El-Toukhy T, Khalaf Y, Hart R, Taylor A, Braude P (2002) Young age does not protect against the adverse effects of reduced ovarian reserve—an eight year study. Hum Reprod 17:1519–1524

    PubMed  Google Scholar 

  11. van Zonneveld P, Scheffer GJ, Broekmans FJ et al. (2003) Do cycle disturbances explain the age-related decline of female fertility? Cycle characteristics of women aged over 40 years compared with a reference population of young women. Hum Reprod 18:495–501

    PubMed  Google Scholar 

  12. Klein NA, Battaglia DE, Miller PB, Branigan EF, Giudice LC, Soules MR (1996) Ovarian follicular development and the follicular fluid hormones and growth factors in normal women of advanced reproductive age. J Clin Endocrinol Metab 81:1946–1951

    PubMed  CAS  Google Scholar 

  13. Klein NA, Battaglia DE, Fujimoto VY, Davis GS, Bremner WJ, Soules MR (1996) Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab 81:1038–1045

    PubMed  CAS  Google Scholar 

  14. Klein NA, Harper AJ, Houmard BS, Sluss PM, Soules MR (2002) Is the short follicular phase in older women secondary to advanced or accelerated dominant follicle development? J Clin Endocrinol Metab 87:5746–5750

    PubMed  CAS  Google Scholar 

  15. Pampiglione JS, Sharma V, Riddle AF, Mason BA, Campbell S (1988) The effect of cycle length on the outcome of in vitro fertilization. Fertil Steril 50:603–606

    PubMed  CAS  Google Scholar 

  16. Klein NA, Illingworth PJ, Groome NP, McNeilly AS, Battaglia DE, Soules MR (1996) Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab 81:2742–2745

    PubMed  CAS  Google Scholar 

  17. Welt CK, McNicholl DJ, Taylor AE, Hall JE (1999). Female reproductive aging is marked by decreased secretion of dimeric inhibin. J Clin Endocrinol Metab 84:105–111

    PubMed  CAS  Google Scholar 

  18. Klein NA, Houmard BS, Hansen KR et al. (2004) Age-related analysis of inhibin A, inhibin B, and activin a relative to the intercycle monotropic follicle-stimulating hormone rise in normal ovulatory women. J Clin Endocrinol Metab 89:2977–2981

    PubMed  CAS  Google Scholar 

  19. Lenton EA, Landgren BM, Sexton L, Harper R (1984) Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol 91:681–684

    PubMed  CAS  Google Scholar 

  20. Hillier SG, Reichert LE Jr, Van Hall EV (1981) Control of preovulatory follicular estrogen biosynthesis in the human ovary. J Clin Endocrinol Metab 52:847–845

    PubMed  CAS  Google Scholar 

  21. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z (1989) Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril 51:651–654

    PubMed  CAS  Google Scholar 

  22. Scott RT, Hofmann GE, Oehninger S, Muasher SJ (1990) Intercycle variability of day 3 follicle-stimulating hormone levels and its effect on stimulation quality in in vitro fertilization. Fertil Steril 54:297–302

    PubMed  Google Scholar 

  23. Cahill DJ, Prosser CJ, Wardle PG, Ford WC, Hull MG (1994) Relative influence of serum follicle stimulating hormone, age and other factors on ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol 101:999–1002

    PubMed  CAS  Google Scholar 

  24. Bancsi LF, Huijs AM, den Ouden CT et al. (2000) Basal follicle-stimulating hormone levels are of limited value in predicting ongoing pregnancy rates after in vitro fertilization. Fertil Steril 73:552–557

    PubMed  CAS  Google Scholar 

  25. van Rooij IA, de Jong E, Broekmans FJ, Looman CW, Habbema JD, te Velde ER (2004) High follicle-stimulating hormone levels should not necessarily lead to the exclusion of subfertile patients from treatment. Fertil Steril 81:1478–1485

    PubMed  Google Scholar 

  26. Chuang CC, Chen CD, Chao KH, Chen SU, Ho HN, Yang YS (2003) Age is a better predictor of pregnancy potential than basal follicle-stimulating hormone levels in women undergoing in vitro fertilization. Fertil Steril 79:63–68

    PubMed  Google Scholar 

  27. Toner JP (2004) Modest follicle-stimulating hormone elevations in younger women: warn but don’t disqualify. Fertil Steril 81:1493–1495

    PubMed  Google Scholar 

  28. Abdalla HI, Thum MY (2004) An elevated basal FSH reflects a quantitative rather than qualitative decline of the ovarian reserve. Hum Reprod 19:893–898

    PubMed  CAS  Google Scholar 

  29. Nasseri A, Mukherjee T, Grifo JA, Noyes N, Krey L, Copperman AB (1999) Elevated day 3 serum follicle-stimulating hormone and/or estradiol may predict fetal aneuploidy. Fertil Steril 71:715–771

    PubMed  CAS  Google Scholar 

  30. Levi AJ, Raynault MF, Bergh PA, Drews MR, Miller BT, Scott RT Jr (2001) Reproductive outcome in patients with diminished ovarian reserve. Fertil Steril 76:666–669

    PubMed  CAS  Google Scholar 

  31. Akande VA, Keay SD, Hunt LP, Mathur RS, Jenkins JM, Cahill DJ (2004) The practical implications of a raised serum FSH and age on the risk of IVF treatment cancellation due to a poor ovarian response. J Assist Reprod Genet 21:257–262

    PubMed  Google Scholar 

  32. Frazier LM, Grainger DA, Schieve LA, Toner JP (2004) Follicle-stimulating hormone and estradiol levels independently predict the success of assisted reproductive technology treatment. Fertil Steril 82:834–840

    PubMed  CAS  Google Scholar 

  33. Jain T, Klein NA, Lee DM, Sluss PM, Soules MR (2003) Endocrine assessment of relative reproductive age in normal eumenorrheic younger and older women across multiple cycles. Am J Obstet Gynecol 189:1080–1084

    PubMed  CAS  Google Scholar 

  34. Jurema MW, Bracero NJ, Garcia JE (2003) Fine tuning cycle day 3 hormonal assessment of ovarian reserve improves in vitro fertilization outcome in gonadotropin-releasing hormone antagonist cycles. Fertil Steril 80:1156–1156

    PubMed  Google Scholar 

  35. Keay SD, Jenkins JM (2004) Ovarian reserve and a slightly different perspective. Fertil Steril 81:1426

    PubMed  Google Scholar 

  36. van Dessel HJHM, Schipper I, Pache TD et al. (1996) Normal human follicle development: an evaluation of correlations with oestradiol, androstenedione and progesterone levels in individual follicles. Clin Endocrinol (Oxf) 44:191–198

    Google Scholar 

  37. Groome NP, Illingworth PJ, O’Brien M et al. (1996) Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab 81:1401–1405

    PubMed  CAS  Google Scholar 

  38. Keay SD, Liversedge NH, Mathur RS, Jenkins JM (1997) Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol 104:521–527

    PubMed  CAS  Google Scholar 

  39. Fanchin R, Cunha-Filho JS, Schonauer LM, Righini C, de Ziegler D, Frydman R (2003) Luteal estradiol administration strengthens the relationship between day 3 follicle-stimulating hormone and inhibin B levels and ovarian follicular status. Fertil Steril 79:585–589

    PubMed  Google Scholar 

  40. Evers JL, Slaats P, Land JA, Dumoulin JC, Dunselman GA (1998) Elevated levels of basal E2-17beta predict poor response in patients with normal basal levels of follicle-stimulating hormone undergoing in vitro fertilization. Fertil Steril 69:1010–1014

    PubMed  CAS  Google Scholar 

  41. Phophong P, Ranieri DM, Khadum I, Meo F, Serhal P (2000) Basal 17beta-estradiol did not correlate with ovarian response and in vitro fertilization treatment outcome. Fertil Steril 74:1133–1136

    PubMed  CAS  Google Scholar 

  42. Frattarelli JL, Bergh PA, Drews MR, Sharara FI, Scott RT (2000) Evaluation of basal estradiol levels in assisted reproductive technology cycles. Fertil Steril 74:518–524

    PubMed  CAS  Google Scholar 

  43. McLachlan RI, Robertson DM, Healy DL, Burger HG, de Kretser DM (1987) Circulating immunoreactive inhibin levels during the normal human menstrual cycle. J Clin Endocrinol Metab 65:954–961

    PubMed  CAS  Google Scholar 

  44. Groome NP, Illingworth PJ, O’Brien M et al. (1994) Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocrinol (Oxf) 40:717–723

    CAS  Google Scholar 

  45. Welt CK, Martin KA, Taylor AE et al. (1997) Frequency modulation of follicle-stimulating hormone (FSH) during the luteal-follicular transition: evidence for FSH control of inhibin B in normal women. J Clin Endocrinol Metab 82:2645–2652

    PubMed  CAS  Google Scholar 

  46. Seifer DB, Lambert-Messerlian G, Hogan JW, Gardiner AC, Blazar AS, Berk CA (1997) Day 3 serum inhibin-B is predictive of assisted reproductive technologies outcome. Fertil Steril 67:110–114

    PubMed  CAS  Google Scholar 

  47. Seifer DB, Scott RT Jr, Bergh PA et al. (1999) Women with declining ovarian reserve may demonstrate a decrease in day 3 serum inhibin B before a rise in day 3 follicle-stimulating hormone. Fertil Steril 72:63–65

    PubMed  CAS  Google Scholar 

  48. Corson SL, Gutmann J, Batzer FR, Wallace H, Klein N, Soules MR (1999) Inhibin-B as a test of ovarian reserve for infertile women. Hum Reprod 14:2818–2821

    PubMed  CAS  Google Scholar 

  49. Creus M, Penarrubia J, Fabregues F et al. (2000) Day 3 serum inhibin B and FSH and age as predictors of assisted reproduction treatment outcome. Hum Reprod 15:2341–2346

    PubMed  CAS  Google Scholar 

  50. Grynberg M, Feyereisen E, Scheffer JB, Koutroubis P, Frydman R, Fanchin R (2010) Early follicle development alters the relationship between antral follicle counts and inhibin B and follicle-stimulating hormone levels on cycle day 3. Fertil Steril 93:894–899

    PubMed  CAS  Google Scholar 

  51. Navot D, Rosenwaks Z, Margalioth EJ (1987) Prognostic assessment of female fecundity. Lancet 2:645–647

    PubMed  CAS  Google Scholar 

  52. Yanushpolsky EH, Hurwitz S, Tikh E, Racowsky C (2003) Predictive usefulness of cycle day 10 follicle-stimulating hormone level in a clomiphene citrate challenge test for in vitro fertilization outcome in women younger than 40 years of age. Fertil Steril 80:111–115

    PubMed  Google Scholar 

  53. Jain T, Soules MR, Collins JA (2004) Comparison of basal follicle-stimulating hormone versus the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril 82:180–185

    PubMed  CAS  Google Scholar 

  54. Kwee J, Schats R, McDonnell J, Lambalk CB, Schoemaker J (2004) Intercycle variability of ovarian reserve tests: results of a prospective randomized study. Hum Reprod 19:590–595

    PubMed  CAS  Google Scholar 

  55. Gulekli B, Bulbul Y, Onvural A et al. (1999) Accuracy of ovarian reserve tests. Hum Reprod 14:2822–2826

    PubMed  CAS  Google Scholar 

  56. Fanchin R, de Ziegler D, Olivennes F, Taieb J, Dzik A, Frydman R (1994) Exogenous follicle stimulating hormone ovarian reserve test (EFORT): a simple and reliable screening test for detecting’ poor responders’ in in-vitro fertilization. Hum Reprod 9:1607–1611

    PubMed  CAS  Google Scholar 

  57. Dzik A, Lambert-Messerlian G, Izzo VM, Soares JB, Pinotti JA, Seifer DB (2000) Inhibin B response to EFORT is associated with the outcome of oocyte retrieval in the subsequent in vitro fertilization cycle. Fertil Steril 74:1114

    PubMed  CAS  Google Scholar 

  58. Kwee J, Elting MW, Schats R, Bezemer PD, Lambalk CB, Schoemaker J (2003) Comparison of endocrine tests with respect to their predictive value on the outcome of ovarian hyperstimulation in IVF treatment: results of a prospective randomised study. Hum Reprod 18:1422–1427

    PubMed  CAS  Google Scholar 

  59. Elting MW, Kwee J, Schats R, Rekers-Mombarg LT, Schoemaker J (2001) The rise of estradiol and inhibin B after acute stimulation with follicle-stimulating hormone predict the follicle cohort size in women with polycystic ovary syndrome, regularly menstruating women with polycystic ovaries, and regularly menstruating women with normal ovaries. J Clin Endocrinol Metab 86:1589–1595

    PubMed  CAS  Google Scholar 

  60. Scheffer GJ, Broekmans FJ, Dorland M, Habbema JD, Looman CW, te Velde ER (1999) Antral follicle counts by transvaginal ultrasonography are related to age in women with proven natural fertility. Fertil Steril 72:845–851

    PubMed  CAS  Google Scholar 

  61. Ng EH, Tang OS, Ho PC (2000) The significance of the number of antral follicles prior to stimulation in predicting ovarian responses in an IVF programme. Hum Reprod 15:1937–1942

    PubMed  CAS  Google Scholar 

  62. Scheffer GJ, Broekmans FJ, Looman CW et al. (2003) The number of antral follicles in normal women with proven fertility is the best reflection of reproductive age. Hum Reprod 18:700–706

    PubMed  CAS  Google Scholar 

  63. Broekmans FJ, Faddy MJ, Scheffer G, Te Velde ER (2004) Antral follicle counts are related to age at natural fertility loss and age at menopause. Menopause 11:607–614

    PubMed  Google Scholar 

  64. Bancsi LF, Broekmans FJ, Eijkemans MJ, de Jong FH, Habbema JD, te Velde ER (2002) Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril 77:328–336

    PubMed  Google Scholar 

  65. Nahum R, Shifren JL, Chang Y, Leykin L, Isaacson K, Toth TL (2001) Antral follicle assessment as a tool for predicting outcome in IVF—is it a better predictor than age and FSH? J Assist Reprod Genet 18:151–155

    PubMed  CAS  Google Scholar 

  66. Hansen KR, Morris JL, Thyer AC, Soules MR (2003) Reproductive aging and variability in the ovarian antral follicle count: application in the clinical setting. Fertil Steril 80:577–583

    PubMed  Google Scholar 

  67. Bancsi LF, Broekmans FJ, Looman CW, Habbema JD, te Velde ER (2004) Impact of repeated antral follicle counts on the prediction of poor ovarian response in women undergoing in vitro fertilization. Fertil Steril 81:35–41

    PubMed  Google Scholar 

  68. Kupesic S, Kurjak A (2002) Predictors of IVF outcome by three-dimensional ultrasound. Hum Reprod 17:950–955

    PubMed  CAS  Google Scholar 

  69. Thomas JD, Rubin DN (1998) Tissue harmonic imaging: why does it work? J Am Soc Echocardiogr 11:803–808

    PubMed  CAS  Google Scholar 

  70. Mercé LT, Bau S, Barco MJ, Troyano J, Gay R, Sotos F, Villa A (2006) Assessment of the ovarian volume, number and volume of follicles and ovarian vascularity by three-dimensional ultrasonography and power Doppler angiography on the HCG day to predict the outcome in IVF/ICSI cycles. Hum Reprod 21:1218–1226

    PubMed  Google Scholar 

  71. Raine-Fenning N, Jayaprakasan K, Clewes J et al. (2008) SonoAVC: a novel method of automatic volume calculation. Ultrasound Obstet Gynecol 31:691–696

    PubMed  CAS  Google Scholar 

  72. Salama S, Arbo E, Lamazou F, Levaillant JM, Frydman R, Fanchin R (2010) Reproducibility and reliability of automated volumetric measurement of single preovulatory follicles using SonoAVC. Fertil Steril 93:2069–2073

    PubMed  Google Scholar 

  73. Zaidi J, Barber J, Kyei-Mensah A, Bekir J, Campbell S, Tan SL (1996) Relationship of ovarian stromal blood flow at the baseline ultrasound scan to subsequent follicular response in an in vitro fertilization program. Obstet Gynecol 88:779–784

    PubMed  CAS  Google Scholar 

  74. Kim SH, Ku SY, Jee BC, Suh CS, Moon SY, Lee JY (2002) Clinical significance of transvaginal color Doppler ultrasonography of the ovarian artery as a predictor of ovarian response in controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer. J Assist Reprod Genet 19:103–112

    PubMed  Google Scholar 

  75. Cate RL, Mattaliano RJ, Hession C et al. (1986) Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 45:685–698

    PubMed  CAS  Google Scholar 

  76. Vigier B, Picard JY, Tran D, Legeai L, Josso N (1984) Production of anti-Mullerian hormone: another homology between Sertoli and granulosa cells. Endocrinology 114:1315–1320

    PubMed  CAS  Google Scholar 

  77. Lee MM, Donahoe PK, Hasegawa T et al. (1996) Mullerian inhibiting substance in humans: normal levels from infancy to adulthood. J Clin Endocrinol Metab 81:571–576

    PubMed  CAS  Google Scholar 

  78. Munsterberg A, Lovell-Badge R (1991) Expression of the mouse anti-mullerian hormone gene suggests a role in both male and female sexual differentiation. Development 113:613–624

    PubMed  CAS  Google Scholar 

  79. Baarends WM, Uilenbroek JT, Kramer P et al. (1995) Antimullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 136:4951–4962

    PubMed  CAS  Google Scholar 

  80. Durlinger AL, Gruijters MJ, Kramer P et al. (2002) Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143:1076–1084

    PubMed  CAS  Google Scholar 

  81. Weenen C, Laven JS, Von Bergh AR et al. (2004) Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol Hum Reprod 10:77–83

    PubMed  CAS  Google Scholar 

  82. Durlinger AL, Kramer P, Karels B et al. (1999) Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140:5789–5796

    PubMed  CAS  Google Scholar 

  83. Durlinger AL, Gruijters MJ, Kramer P et al. (2001) Anti-Mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142:4891–4899

    PubMed  CAS  Google Scholar 

  84. McGee EA, Smith R, Spears N, Nachtigal MW, Ingraham H, Hsueh AJ (2001) Mullerian inhibitory substance induces growth of rat preantral ovarian follicles. Biol Reprod 64:293–298

    PubMed  CAS  Google Scholar 

  85. Durlinger AL, Visser JA, Themmen AP (2002) Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124:601–609

    PubMed  CAS  Google Scholar 

  86. Schmidt, KLT, Byskov A, Nyboe Andersen A, Muller J, Yding Andersen C (2003) Density and distribution of primordial follicles in single pieces of cortex from 21 patients and in individual pieces of cortex from three entire human ovaries. Hum Reprod 18:1158–1164

    PubMed  CAS  Google Scholar 

  87. Vigier B, Forest MG, Eychenne B et al. (1989) Anti-Mullerian hormone produces endocrine sex reversal of fetal ovaries. Proc Natl Acad Sci USA 86:3684–3688

    PubMed  CAS  Google Scholar 

  88. di Clemente N, Ghaffari S, Pepinsky RB et al. (1992) A quantitative and interspecific test for biological activity of anti-mullerian hormone: the fetal ovary aromatase assay. Development 114:721–727

    PubMed  Google Scholar 

  89. di Clemente N, Goxe B, Remy JJ et al. (1994) Inhibitory effect of AMH upon the expression of aromatase and LH receptors by cultured granulosa cells of rat and porcine immature ovaries. Endocrine 2:253–258

    Google Scholar 

  90. Fallat ME, Siow Y, Marra M, Cook C, Carrillo A (1997) Mullerian-inhibiting substance in follicular fluid and serum: a comparison of patients with tubal factor infertility, polycystic ovary syndrome, and endometriosis. Fertil Steril 67:962–965

    PubMed  CAS  Google Scholar 

  91. Cook CL, Siow Y, Brenner AG, Fallat ME (2002) Relationship between serum mullerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil Steril 77:141–146

    PubMed  Google Scholar 

  92. Pigny P, Merlen E, Robert Y et al. (2003) Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 88:5957–5962

    PubMed  CAS  Google Scholar 

  93. Nestorovic N, Lovren M, Sekulic M et al. (2004) Chronic somatostatin treatment affects pituitary gonadotrophs, ovaries and onset of puberty in rats. Life Sci 74:1359–1373

    PubMed  CAS  Google Scholar 

  94. La Marca A, Malmusi S, Giulini S et al. (2004) Anti-Mullerian hormone plasma levels in spontaneous menstrual cycle and during treatment with FSH to induce ovulation. Hum Reprod 19:2738–2741

    PubMed  Google Scholar 

  95. Bath LE, Wallace WH, Shaw MP, Fitzpatrick C, Anderson RA (2003) Depletion of ovarian reserve in young women after treatment for cancer in childhood: detection by anti-Mullerian hormone, inhibin B and ovarian ultrasound. Hum Reprod 18:2368–2374

    PubMed  CAS  Google Scholar 

  96. Fanchin R, Mendez Lozano DH, Louafi N, Achour-Frydman N, Frydman R, Taieb J (2005) Dynamics of serum anti-Mullerian hormone levels during the luteal phase of controlled ovarian hyperstimulation. Hum Reprod 20:747–751

    PubMed  CAS  Google Scholar 

  97. Cook CL, Siow Y, Taylor S, Fallat ME (2000) Serum müllerian-inhibiting substance levels during normal menstrual cycles. Fertil Steril 73:859–861

    PubMed  CAS  Google Scholar 

  98. van Disseldorp J, Faddy MJ, Themmen AP et al. (2008) Relationship of serum antimüllerian hormone concentration to age at menopause. J Clin Endocrinol Metab 93:2129–2134

    PubMed  Google Scholar 

  99. Fanchin R, Schonauer LM, Righini C, Frydman N, Frydman R, Taieb J (2003) Serum anti-Mullerian hormone dynamics during controlled ovarian hyperstimulation. Hum Reprod 18:328–332

    PubMed  CAS  Google Scholar 

  100. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC (2002) Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril 77:357–362

    PubMed  Google Scholar 

  101. Seifer DB, MacLaughlin DT, Christian BP, Feng B, Shelden RM (2002) Early follicular serum müllerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil Steril 77:468–471

    PubMed  Google Scholar 

  102. van Rooij IA, Broekmans FJ, te Velde ER et al. (2002) Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum Reprod 17:3065–3071

    PubMed  Google Scholar 

  103. Muttukrishna S, Suharjono H, McGarrigle H, Sathanandan M (2004) Inhibin B and anti-Mullerian hormone: markers of ovarian response in IVF/ICSI patients? BJOG 111:1248–1253

    PubMed  CAS  Google Scholar 

  104. Fanchin R, Schonauer LM, Righini C, Guibourdenche J, Frydman R, Taieb J (2003) Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod 18:323–327

    PubMed  CAS  Google Scholar 

  105. Fanchin R, Taieb J, H Mendez, Lozano D, Ducot B, Frydman R, Bouyer J (2005) High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod 20:923–927

    PubMed  CAS  Google Scholar 

  106. van Rooij IA, Tonkelaar I, Broekmans FJ et al. (2004) Anti-mullerian hormone is a promising predictor for the occurrence of the menopausal transition. Menopause 11:601–606

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Grynberg, M., Fanchin, R. (2011). Évaluation du statut folliculaire ovarien. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_18

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics