Skip to main content

Augmented feedback, virtual reality and robotics for designing new rehabilitation methods

  • Chapter

Abstract

Neuro-rehabilitation is currently undergoing a technological revolution! Groups of engineers and rehabilitation specialists are working on designing and testing a great variety of rehabilitation devices and systems. The reason for this is that, although it is generally accepted that rehabilitation improves outcome after stroke, patients are still left with impairments causing various levels of handicap and limiting their integration in community life. Comparison of traditional rehabilitation techniques has failed to show superiority of one over another (15), and concepts for rehabilitation have been changing over the last 20 years, with the biggest change being evaluation. There is a move to make rehabilitation techniques more evidence based. As such, numerous research teams have set about to create more effective rehabilitation techniques based on principles of motor control and learning and incorporating new technology to fulfil the principal goals of rehabilitation: increased functional ability and increased participation in the community. The aim of this chapter is to discuss applications for augmented feedback (AF) in rehabilitation of motor skills of patients with neurological disorders, in particular within virtual reality (VR) environments associated or not with mechatronic devices (robotics). First, we will examine some motor learning principles relevant to rehabilitation and how AF fits into these concepts. We will then go on to review applications of AF used for rehabilitation of specific movement parameters. We will also discuss the use of feedback distortion to manipulate action-perception coupling and systems based on movement observation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamovich SV, et al. (2005) A virtual reality-based exercise system for hand rehabilitation post-stroke. Presence 14(2):161–174

    Article  Google Scholar 

  2. Amirabdollahian F, et al. (2007) Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy. J Neuroeng Rehabil 4:4

    Article  PubMed  Google Scholar 

  3. Bach-y-Rita P, et al. (2002) Computer-assisted motivating rehabilitation (CAMR) for institutional, home, and educational late stroke programs. Top Stroke Rehabil 8(4):1–10

    Article  PubMed  Google Scholar 

  4. Batavia M, et al. (2001) A do-it-yourself membrane-activated auditory feedback device for weight bearing and gait training: a case report. Arch Phys Med Rehabil 82(4):541–545

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford, England

    Google Scholar 

  6. Bi S, Ji L, Wang Z (2005) Robot-aided sensorimotor arm training methods based on neurological rehabilitation principles in stroke and brain injury patients. In: 27th Annual International Conference of the IEEE Engineering in Medecine and Biology Society. Shanghai, China, pp. 5025–5027

    Google Scholar 

  7. Brewer BR, Klatzky R, Matsuoka Y (2008) Visual feedback distortion in a robotic environment for hand rehabilitation. Brain Res Bull 75(6):804–813

    Article  PubMed  Google Scholar 

  8. Broeren J, et al. (2007) Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabil Neural Repair 21(2):180–189

    Article  PubMed  Google Scholar 

  9. Carey JR, et al. (2007) Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair 21(3):216–232

    Article  PubMed  Google Scholar 

  10. Carignan CR, Krebs HI (2006) Telerehabilitation robotics: bright lights, big future? J Rehabil Res Dev 43(5):695–710

    Article  PubMed  Google Scholar 

  11. Carr R, Shepherd J (1998) Neurological rehabilitation. Optimizing motor performance. Butterworth-Heinemann, Oxford

    Google Scholar 

  12. Cassadio M, Morasso P, Sanguineti V, Giannoni P (2006) Impedance-controlled, minimally-assistive robotic training of severely impaired hemiparetic patients. In: BioRob 2006. Piza, Italy

    Google Scholar 

  13. Colombo R, et al. (2007) Design strategies to improve patient motivation during robotaided rehabilitation. J Neuroeng Rehabil 4:3

    Article  PubMed  Google Scholar 

  14. Eng K, et al. (2007) Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput 45(9):901–907

    Article  PubMed  Google Scholar 

  15. Ernst E (1990) A review of stroke rehabilitation and physiotherapy. Stroke 21(7):1081–1085

    CAS  PubMed  Google Scholar 

  16. Feintuch U, et al. (2006) Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation. Cyberpsychol Behav 9(2):129–132

    Article  PubMed  Google Scholar 

  17. Flanagan JR, Rao AK (1995) Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J Neurophysiol 74(5):2174–2178

    CAS  PubMed  Google Scholar 

  18. Fung J, et al. (2006) A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychol Behav 9(2):157–162

    Article  PubMed  Google Scholar 

  19. Giraux P, Sirigu A (2003) Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage 20(Suppl 1):S107–S111

    Article  PubMed  Google Scholar 

  20. Hanlon, R.E., Motor learning following unilateral stroke. Arch Phys Med Rehabil, 1996. 77(8): p. 811–5

    Article  CAS  PubMed  Google Scholar 

  21. Hoffman AN, et al. (2008) Environmental enrichment-mediated functional improvement after experimental traumatic brain injury is contingent on task-specific neurobehavioral experience. Neurosci Lett 431(3):226–230

    Article  CAS  PubMed  Google Scholar 

  22. Hogan N, Krebs HI (2004) Interactive robots for neuro-rehabilitation. Restor Neurol Neurosci 22(3–5):349–358

    PubMed  Google Scholar 

  23. Holden MK, et al. (2001) Retraining movemsent in patients with acquired brain injury using a virtual environment. Stud Health Technol Inform 81:192–198

    CAS  PubMed  Google Scholar 

  24. Holden MK (2005) Virtual environments for motor rehabilitation: review. Cyberpsychol Behav 8(3):187–211; discussion 212–219

    Article  PubMed  Google Scholar 

  25. Huang H (2005) Interactive multimodal biofeedback for task-orientated neural rehabilitation. In: 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai, China, pp. 2547–2550

    Google Scholar 

  26. Huijgen BC, et al. (2008) Feasibility of a home-based telerehabilitation system compared to usual care: arm/hand function in patients with stroke, traumatic brain injury and multiple sclerosis. J Telemed Telecare 14(5):249–256

    Article  PubMed  Google Scholar 

  27. Johansson RS (1991) How is grasping modified by somatosensory input? In: Humphrey DR, Freund H-J (eds) Motor control: concepts and issues, pp. 331–355. Wiley, New York

    Google Scholar 

  28. Johnson MJ, et al. (2007) Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. J Neuroeng Rehabil 4:6

    Article  PubMed  Google Scholar 

  29. Koenig A, et al. (2008) Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform 132:204–209

    PubMed  Google Scholar 

  30. Kwakkel G (2006) Impact of intensity of practice after stroke: issues for consideration. Disabil Rehabil 28(13–14):823–830

    Article  PubMed  Google Scholar 

  31. Lamontagne A, et al. (2007) Modulation of walking speed by changing optic flow in persons with stroke. J Neuroeng Rehabil 4:22

    Article  PubMed  Google Scholar 

  32. Levin MF (1996) Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 119:281–293

    Article  PubMed  Google Scholar 

  33. Lewis-Brooks A (2004) HUMANICS 1 — a feasibility study to create a home internet based telehealth product to supplement acquired brain injury therapy. In: Proceedings of the 5th International Conference on Disability, Virtual Reality and Associated Technologies, Oxford, UK

    Google Scholar 

  34. Liu J, Cramer SC, Reinkensmeyer DJ (2006) Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J Neuroeng Rehabil 3:20

    Article  CAS  PubMed  Google Scholar 

  35. Lövquist E, Dreifaldt U (2006) The design of a haptic exercise for post-stroke arm rehabilitation. In: Proceedings of the 6th International Conference on Disability, Virtual Reality and Associated Technologies. Esbjerg, Denmark, pp. 309–315

    Google Scholar 

  36. Lum PS, et al. (2002) Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 83(7):952–959

    Article  PubMed  Google Scholar 

  37. Lunenburger L, et al. (2004) Biofeedback in gait training with the robotic orthosis Lokomat. In: Conference Proceedings — IEEE Engineering in Medicine and Biology Society, San Francisco, USA. pp. 4888–4891

    Google Scholar 

  38. Luo X, et al. (2005.) Integration of augmented reality and assistive devices for poststroke hand opening rehabilitation. In: 27th Annual International Conference of the IEEE Engineering in Medecine and Biology society. Shanghai, China, pp. 6855–6858

    Google Scholar 

  39. Mali U, Goljar N, Munih M (2006) Application of haptic interface for finger exercise. IEEE Trans Neural Syst Rehabil Eng 14(3):352–360

    Article  PubMed  Google Scholar 

  40. Maulucci RA, Eckhouse RH (2001) Retraining reaching in chronic stroke with real-time auditory feedback. NeuroRehabilitation 16(3):171–82

    CAS  PubMed  Google Scholar 

  41. Michaelsen SM, Dannenbaum R, Levin MF (2006) Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke 37(1):186–192

    Article  PubMed  Google Scholar 

  42. Mirelman A, Bonato P, Deutsch JE (2008) Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40(1):167–174

    Google Scholar 

  43. Moreland JD, et al. (2003) Progressive resistance strengthening exercises after stroke: a single-blind randomized controlled trial. Arch Phys Med Rehabil 84(10):1433–1440

    Article  PubMed  Google Scholar 

  44. Mulder T (2007) Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 114(10):1265–1278

    Article  PubMed  Google Scholar 

  45. Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644

    Article  CAS  PubMed  Google Scholar 

  46. Nugent JA, Schurr KA, Adams RD (1994) A dose-response relationship between amount of weight-bearing exercise and walking outcome following cerebrovascular accident. Arch Phys Med Rehabil 75(4):399–402

    Article  CAS  PubMed  Google Scholar 

  47. Page SJ (2003) Intensity versus task-specificity after stroke: how important is intensity? Am J Phys Med Rehabil 82(9):730–732

    Article  PubMed  Google Scholar 

  48. Page SJ, Gater DR, Bach YRP (2004) Reconsidering the motor recovery plateau in stroke rehabilitation. Arch Phys Med Rehabil 85(8):1377–1381

    Article  PubMed  Google Scholar 

  49. Patton J, et al., (2004) Robotics and virtual reality: the development of a life-sized 3-D system for the reabilitation of motor function. In: Conference Proceetings — IEEE Engineering in Medecine and Biology Society, San Francisco, USA pp. 4840–4843

    Google Scholar 

  50. Patton JL, et al. (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168(3):368–383

    Article  PubMed  Google Scholar 

  51. Perez MA, Lungholt BK, Nielsen JB (2005) Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans. J Physiol 568(Pt 1):343–354

    Article  CAS  PubMed  Google Scholar 

  52. Piron L, et al. (2008) Satisfaction with care in post-stroke patients undergoing a telerehabilitation programme at home. J Telemed Telecare, 14(5):257–260

    Article  PubMed  Google Scholar 

  53. Platz T, et al. (2005) Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: a single-blind, multicentre randomized controlled trial. Clin Rehabil 19(7):714–724

    Article  CAS  PubMed  Google Scholar 

  54. Regnaux JP, et al. (2008) Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke. Clin Biomech (Bristol, Avon) 23(6):762–768

    Article  CAS  Google Scholar 

  55. Reinkensmeyer DJ, et al. (2002) Web-based telerehabilitation for the upper extremity after stroke. IEEE Trans Neural Syst Rehabil Eng 10(2):102–108

    Article  PubMed  Google Scholar 

  56. Rizzolatti G, et al. (1996) Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res 3(2):131–141

    Article  CAS  PubMed  Google Scholar 

  57. Roby-Brami A, et al. (2003) Motor compensation and recovery for reaching in stroke patients. Acta Neurol Scand 107(5):369–381

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez RJ, et al. (2006) Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans Neural Syst Rehabil Eng 14(3):378–89

    Article  PubMed  Google Scholar 

  59. Schauer M, Mauritz KH (2003) Musical motor feedback (MMF) in walking hemiparetic stroke patients: randomized trials of gait improvement. Clin Rehabil 17(7):713–722

    Article  PubMed  Google Scholar 

  60. Schmidt R, Wrisberg C (2004) Motor learning and performance. Human Kinetics, Leeds, England

    Google Scholar 

  61. Sribunruangrit N, et al. (2004) Speed-accuracy tradeoff during performance of a tracking task without visual feedback IEEE Trans Neural Syst Rehabil Eng 12(1):131–139

    Article  PubMed  Google Scholar 

  62. Stein J, et al. (2004) Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 83(9):720–728

    Article  PubMed  Google Scholar 

  63. Takahashi CD, et al. (2008) Robot-based hand motor therapy after stroke. Brain 131(Pt 2):425–437

    Article  PubMed  Google Scholar 

  64. Taub E, Uswatte G, Elbert T (2002) New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosci 3(3):228–236

    Article  CAS  PubMed  Google Scholar 

  65. Taub E, et al. (2005) AutoCITE: automated delivery of CI therapy with reduced effort by therapists. Stroke 36(6):1301–1304

    Article  PubMed  Google Scholar 

  66. Taub E, Uswatt G (2006) Constraint-induced movement therapy: answers and questions after two decades of research. NeuroRehabilitation 21(2):93–95

    PubMed  Google Scholar 

  67. Todorov E, Shadmehr R, Bizzi E (1997) Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Mot Behav 29(2):147–158

    Article  PubMed  Google Scholar 

  68. van Vliet PM, Wulf G (2006) Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil 28(13–14):831–840

    Article  PubMed  Google Scholar 

  69. Viau A, et al. (2004) Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil 1(1):11

    Article  PubMed  Google Scholar 

  70. Volpe BT, et al. (2008) Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair 22(3):305–310

    Article  PubMed  Google Scholar 

  71. Winstein CJ, Merians AS, Sullivan KJ (1999) Motor learning after unilateral brain damage. Neuropsychologia 37(8):975–987

    Article  CAS  PubMed  Google Scholar 

  72. Woldag H, Hummelsheim H (2002) Evidence-based physiotherapeutic concepts for improving arm and hand function in stroke patients: a review. J Neurol 249(5):518–528

    Article  PubMed  Google Scholar 

  73. Wu C, et al. (2000) A kinematic study of contextual effects on reaching performance in persons with and without stroke: influences of object availability. Arch Phys Med Rehabil 81(1):95–101

    CAS  PubMed  Google Scholar 

  74. Yavuzer G, et al. (2008) Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil 89(3):393–398

    Article  PubMed  Google Scholar 

  75. Yang, Y.R., et al., Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture, 2008. 28(2):201–206

    Article  PubMed  Google Scholar 

  76. Zheng H, et al. (2006) SMART project: application of emerging information and communication technology to home-based rehabilitation for stroke patients. In: Proceedings of the 6th International Conference on Disability, Virtual Reality and Associated Technologies. University of Reading, UK: Esbjerg, Denmark, pp. 215–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Robertson, J.V.G., Roby-Brami, A. (2010). Augmented feedback, virtual reality and robotics for designing new rehabilitation methods. In: Rethinking physical and rehabilitation medicine. Collection de L’Académie Européenne de Médecine de Réadaptation. Springer, Paris. https://doi.org/10.1007/978-2-8178-0034-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0034-9_12

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0033-2

  • Online ISBN: 978-2-8178-0034-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics